htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
emphasize objectives XML-Code

flag

Systems Theory

Module name (EN):
Name of module in study programme. It should be precise and clear.
Systems Theory
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2005
Module code: MST406
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
2V (2 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
2
Semester: 4
Mandatory course: yes
Language of instruction:
German
Assessment:
Written exam

[updated 04.08.2012]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

MST406 Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2005 , semester 4, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
30 class hours (= 22.5 clock hours) over a 15-week period.
The total student study time is 60 hours (equivalent to 2 ECTS credits).
There are therefore 37.5 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
MST204 Electrical Engineering


[updated 04.08.2012]
Recommended knowledge:
Electricity and Magnetism, Mechanical Engineering, Thermodynamics

[updated 04.08.2012]
Recommended as prerequisite for:
MST502 Control Engineering I
MST601 Control Engineering II


[updated 12.08.2012]
Module coordinator:
Prof. Dr. Benedikt Faupel
Lecturer: Prof. Dr. Benedikt Faupel

[updated 01.10.2005]
Learning outcomes:
Fundamentals of systems theory. After completing this course, students will understand and be able to use modern tools for assessing the behaviour of elementary transmission systems in the time and frequency domains. They will also be capable of using the different descriptive models and of applying Laplace transformations. Students will have a good command of the methods taught in this course and will be able to deploy them when processing sensor signals.

[updated 04.08.2012]
Module content:
1. Introduction to systems theory
   Definitions, standards and nomenclature
   LTI systems and nonlinear systems
   Application of the Laplace transform and computational rules
   Describing the time response of systems (weighting functions and step  
   response)
   Block diagrams
2. Functional description of elementary transfer elements
   Differential equations and transfer functions
   Distribution of poles and zeros
   Root locus plots and Bode plots
3. Static and dynamic behaviour of closed-loop control systems
4. System stability
   Definition of stability
   Algebraic stability criteria (Routh-Hurwitz criterion)
   Cremer-Leonhard-Mikhailov
   Simplified Nyquist criterion in root locus plots
   Simplified Nyquist criterion in Bode plots
5. Sample technical applications
   Creating block diagrams
   Setting up and solving differential equations
   Determining time response
6. Simulation of transmission systems

[updated 04.08.2012]
Teaching methods/Media:
Lectures, problem-solving

[updated 04.08.2012]
Recommended or required reading:
Lutz, H.; Wendt, W.: Taschenbuch der Regelungstechnik; 3. Auflage; Verlag Harri Deutsch, Frankfurt/Main 2000
Föllinger, O.: Regelungstechnik; 8. Auflage; Hüthig Verlag, Heidelberg 1994
Föllinger, O.: Laplace- und Fourier-Transformation. Hüthig Verlag, Heidelberg, 1986
Meyr, H.: Regelungstechnik und Systemtheorie.  Wissenschaftsverlag Mainz, Aachen, 2000
Samal, E.; Becker, W.: Grundriss der praktischen Regelungstechnik. Oldenbourg Verlag, München 1996
L. Merz; H. Jaschek: Grundkurs der Regelungstechnik, Oldenbourg Verlag, München, 1985
H. Jaschek; W. Schwimm: Übungsaufgaben zum Grundkurs der Regelungstechnik,  Oldenbourg Verlag, München 1993
Leonard, W.: Einführung in die Regelungstechnik; 6. Auflage. Vieweg Verlag, Braunschweig 1992
Walter, H.: Kompaktkurs Regelungstechnik. Vieweg Verlag, Braunschweig 2001


[updated 04.08.2012]
[Wed May  8 03:13:30 CEST 2024, CKEY=systheo, BKEY=mst, CID=MST406, LANGUAGE=en, DATE=08.05.2024]