1. Tabelle mit Diskniminanden und Parametern			
		r	S
	- 3	_	_
	- ¥		
	- 7	125	189
	- 8	125	58
	- 11	512	533
	- 19	512	513
		•	•

2. Lösen einer quadrahschen Gleichung abhängig von einem D-Wert und der Prinzall p $4p = n^{2} + |D| v^{2}$

Quadratischen Nachtresty mod p finden 3. [Sperialfall D=-3; keine Kubikzahl] <u>p-1</u> $\equiv -1 \mod p$ 3 [Speialfall D=-3: g ≠ 1 mod p]

5. falls
$$D = -3$$
:
 6 kurven bilden
 $y^2 = x^3 - g^k \mod p$
 $0 \le k \le 5$
 $4 \text{ zusähliche Werte für } |E|$
 $p + 1 \pm (n \pm 3v)/2$

6. falls
$$D = -4$$
:
 $y^2 = x^3 - g^k \cdot x \mod p$, $0 \le k \le 3$
2 zuläteliche Werte für $|E|$
 $p + 1 + 2v$
 $p + 1 - 2v$

7. falls D & E-3, -43
benutre r, s and Tabelle von Schnitt A
bilde zwei Kurven für
$$k \in E0, 13$$

 $y^2 = x^3 - 3rs^3g^{2k} + 2rs^3g^{34} mod p$

Beispiel
$$(D) = -3$$
, $p = A3$
 (2) $4p = M^{2} + |-3| \cdot V^{2}$ $M, V \in M$
 $4p = M^{2} + 3v^{2}$ $4 \cdot 7 = 4^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 4^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 4^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2} + 3 \cdot 7^{2}$
 $4 \cdot 7 = 7^{2}$