Anzalil der Puntle auf E
Beiriele:

$$
\begin{aligned}
& p=7, y^{2} \equiv x^{3}+x+4 \bmod 7,|E|=10 \\
& p=101, y^{2} \equiv x^{3}+x+1 \bmod 101,|E|=105 \\
& y^{2} \equiv x^{3}+3 x+7 \bmod 101,|E|=91 \\
& p=997, y^{2} \equiv x^{3}+2 x+2 \bmod 997,|E|=973 \\
& x^{3}+2 x+4 \bmod \text { g97, }|E|=1048
\end{aligned}
$$

Sate von Hasse:

$$
\begin{array}{lr}
(\sqrt{p}-1)^{2} \leqslant|E| \leqslant & (\sqrt{p}+1)^{2} \\
p-2 \sqrt{p}+1 & p+2 \sqrt{p}+1
\end{array}
$$

Quadraturnole mod p

$$
y^{2} \equiv \underbrace{x^{3}+a x+b}_{z} \bmod r
$$

zu lisen sind Gleicheungen

$$
y^{2} \equiv z \bmod p \quad(x)
$$

fiir vorgegabene z.

Test, ob (*) lösbar:

$$
z^{\frac{p-1}{2}} \equiv\left\{\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right\} \bmod p \Leftrightarrow\left\{\begin{array}{c}
2 \text { lösnngenty } \\
\text { nur } 0 \text { ist lömig } \\
\text { heine lösmng }
\end{array}\right.
$$

Beispicl:

- $y^{2} \equiv 2 \bmod 7$, Test $2^{\frac{7-1}{2}} \equiv 2^{3} \equiv 1 \bmod 7$ $\Rightarrow 2$ lösungen
- $y^{2} \equiv 3 \bmod 7$, Test $3^{\frac{7-1}{2}} \equiv 3^{3} \equiv 6 \equiv-1 \bmod 7$
\Rightarrow Keine lösung

Berechnung der Quadatwureln

$$
y^{2} \equiv z \bmod p \quad z^{\frac{p-1}{2}} \equiv \Lambda \bmod p
$$

- einfacher Fall: $p \equiv 3 \bmod 4$ $y \equiv z^{\frac{p+1}{4}} \bmod p$ ist eine loisung , denn
- nächst homplizierterer Fall

$$
\begin{aligned}
& p \equiv 5 \bmod 8 \\
& \begin{array}{ll}
\quad z^{\frac{p-1}{2}} \equiv 1 \bmod p \\
z^{\frac{p+3}{8}} \text { mod } p & L z^{\frac{p-1}{4}} \equiv \pm 1 \bmod p
\end{array}
\end{aligned}
$$

falls $z^{\frac{P-1}{4}} \equiv 1 \bmod p$, dann $y^{\frac{p+3}{8}} \bmod p$ line lösung falls $z^{\frac{p-1}{4}} \equiv-1$ mod p, dann tue folyendes erzwinge eine zusäteliche " -1 ", indem eine Variable μ mit $\mu^{2} \equiv-1$ mod p eingebracht wird. Hiers wähle so lange zufüllage Werte r, bis $r^{\frac{p-1}{4}} \equiv \mu \bmod p$ diese Bedingung erfüllt.
gelöste Fälle

$$
\begin{aligned}
& \text { des } \\
& \begin{array}{l}
5 \text { mod } 8 \\
\text { Verfahnens }
\end{array}
\end{aligned}
$$

Beispiele:

$$
\begin{aligned}
& p \equiv 3 \bmod 4 \\
& p=19, y^{2} \equiv 6 \bmod 19 \\
& z=6 \rightarrow y \equiv z^{\frac{p+1}{4}} \equiv 6^{\frac{19+1}{4}} \equiv 6^{5} \bmod 19 \\
& 6^{5} \equiv 6^{2} \cdot 6^{2} \cdot 6 \equiv(-2) \cdot(-2) \cdot 6 \equiv 24 \equiv 5 \bmod 19 \\
& p \equiv 5 \bmod 8 \\
& p=29, y^{2} \equiv 7 \bmod 29 \\
& y \equiv 7^{\frac{29+3}{8}} \equiv 7^{4} \equiv 7^{2} \cdot 7^{2} \equiv 20 \cdot 20 \equiv(-9) \cdot(-9) \\
& \equiv 81 \equiv-6 \equiv 23 \bmod 29 \\
& \cdot p=29
\end{aligned}
$$

$$
y^{2} \equiv 5 \bmod 29 \quad \frac{p-1}{4}
$$

(fülnt aud den Fall $z^{F_{4}} \equiv-1 \bmod p$)

