$$\frac{Anzahl der Punkk Guf E}{Buiriele:}$$

$$P = 7, \quad y^{2} \equiv x^{3} + x + 4 \mod 7, \quad |E| = 10$$

$$P = 101, \quad y^{2} \equiv x^{3} + x + 1 \mod 101, \quad |E| = 105$$

$$y^{2} \equiv x^{3} + 3x + 7 \mod 101, \quad |E| = 91$$

$$P = 997, \quad y^{2} \equiv x^{3} + 2x + 2 \mod 997, \quad |E| = 973$$

$$x^{3} + 2x + 4 \mod 997, \quad |E| = 1048$$
Sate von Hasse:

$$(\sqrt{P} - 1)^{2} \leq |E| \leq (\sqrt{P} + 1)^{2}$$

$$P = 2\sqrt{P} + 1$$

Quadratuurulu mod p

$$g^{2} \equiv \chi^{3} + a\chi + b$$
 mod p
 $g^{2} \equiv \chi^{3} + a\chi + b$ mod p
 $g^{2} \equiv \chi$ mod p (χ)
für vorgegebene χ .
Test, ob (χ) lösber:
 $\frac{p-1}{2} \equiv \begin{cases} 1 \\ 0 \\ -1 \end{cases}$ mod $p^{(2)}$ (χ) löshing
lecine lösung
Beispord:
 $g^{2} \equiv 2 \mod 7$, Test $2^{\frac{3-4}{2}} \equiv 2^{\frac{3}{2}} = 1 \mod 7$
 $\Rightarrow 2 \ lösungen$
 $g^{2} \equiv 3 \mod 7$, Test $3^{\frac{3-4}{2}} \equiv 3^{\frac{3}{2}} \equiv 6 \equiv -1 \mod 7$
 $= 3 \ lecine \ lösung$

Berechnung der Quedertunneln

$$y^2 \equiv 2 \mod p$$

 $z \equiv 1 \mod p$
 $z \equiv 1 \mod p$

ge löste Fälle S [7 (mod 8) ≡ 3 mod 4 Ø 1 2 3 1 = 3 Erweitening mody УГ <u>5</u> S.o. Erweitening des 5 mod 8 Verfahrens

Beispiele:
•
$$p \equiv 3 \mod 4$$

 $p \equiv 1.9$, $y^2 \equiv 6 \mod 1.9$
 $z \equiv 6 \rightsquigarrow y \equiv z^{\frac{p+1}{4}} \equiv 6^{\frac{12+1}{4}} \equiv 6 \mod 1.9$
 $6^{\frac{5}{2}} \equiv 6^{\frac{5}{6}} \cdot 6 \equiv (-2) \cdot (-2) \cdot 6 \equiv 24 \equiv 5 \mod 1.9$
• $p \equiv 5 \mod 8$
 $p \equiv 2.9$, $y^2 \equiv 7 \mod 2.9$
 $y \equiv 7^{\frac{2.3+3}{8}} \equiv 7^4 \equiv 7^2 \cdot 7^2 \equiv 20 \cdot 20 \equiv (-3) \cdot (-9)$
 $\equiv 81 \equiv -6 \equiv 23 \mod 2.9$
 $y^2 \equiv 5 \mod 2.9$