$$
\begin{aligned}
& \text { "Mbang: } \\
& 5^{x} \equiv 12 \bmod 23 \\
& q=2 \\
& \begin{array}{c}
\left(5^{x}\right)^{\frac{23-1}{2}} \equiv 12 \\
22^{x} \equiv 1 \bmod 23 \\
23
\end{array} \\
& \Rightarrow x \equiv 0 \quad \bmod 2 \\
& \text { CRT } x \equiv 0 \bmod 2 \quad a_{1} m_{1} \\
& x \equiv 9 \mathrm{mod} 11 \\
& m_{1}^{\prime} \equiv \frac{1}{m_{1}} \bmod m_{2} \\
& 6 \equiv \frac{1}{2} \bmod 11 \\
& m_{2}^{\prime} \equiv \frac{1}{m_{2}} \bmod m_{1} \\
& \equiv \frac{1}{11} \bmod 2 \\
& z \equiv \frac{1}{2} \bmod p \\
& 2 \cdot z \equiv 1 \mathrm{mod} p \\
& z=\frac{p+1}{2} 1, p+1,2 p+1 \\
& \equiv \frac{1}{1} \equiv 1 \bmod 2 \\
& x=a_{1} \cdot m_{2} \cdot m_{2}^{\prime}+a_{2} \cdot m_{1} \cdot m_{1}! \\
& 0 \cdot n \cdot 1+9 \cdot 2 \cdot 6=108 \equiv 20 \bmod 22
\end{aligned}
$$

Erkenuen der Kollasion in der Zahlenfolge
ziel: Speichern der Folge vermeiden

$$
\begin{aligned}
& y h l \quad\left(y \equiv g^{h} \cdot h^{0} \operatorname{mal} p\right) \\
& y^{\prime} k^{\prime} l^{\prime} \quad\left(y^{\prime} \equiv g^{\xi^{\prime}} \cdot h_{\operatorname{lod}}^{l^{\prime}}\right) \\
& y \equiv y^{\prime} \\
& \text { - schuelle F. } \\
& \text { - } l_{\text {aigusimp }} \text {. }
\end{aligned}
$$

Lanfzeit
Anzahl Schnitte bis Kollision q verschiedene Werte fiir x bzw y Folye ve-hält sich" wie zufillig" Wahrscheinlichkei'tsbetrachtung
\Rightarrow erwartete Lanfzert
Frage' mit welcher Wah-scheinhichkert wiedelholt sich y beim 2. Schritt

Antwort $\frac{1}{q}^{q}$
Also wind mit Wah-nheinlichke't $\frac{q_{r}-1}{q}$ weile-gerechnet.
Beim 3.Schin't sind 2 Wr-ke vorhanden, d.h. Weiterrechnen mit W. $\frac{q-2}{q}$

Iugesamt werden i Schitte geoechnet

$$
P(i)=\frac{q-1}{q} \cdot \frac{q-2}{q} \cdot \frac{q-3}{q} \cdot \cdot \frac{q-i}{q}
$$

Ergebnis erwartet wenn $P\left(i^{i}\right)<\frac{1}{2}$

$$
\left(1-\frac{1}{q}\right) \cdot\left(1-\frac{2}{q}\right) \cdots\left(1-\frac{i}{q}\right)<\frac{1}{2}
$$

Trick: $\quad 1+x<e^{x}=1+x+\frac{x^{2}}{2}+\ldots$

$$
\square
$$

$$
<e^{-\frac{1}{2}} \cdot e^{-\frac{2}{q}} \cdots e^{-\frac{i}{a}}
$$

$$
=e^{-\frac{1}{q}-\frac{2}{q}-\frac{3}{2}-\cdots \frac{\dot{a}}{q}}
$$

$$
=\frac{e^{-\frac{1}{9}(1+2+\ldots+i)}}{i(i+1) 1}
$$

$$
=e^{-\frac{1}{9}\left(\frac{i(i+1)}{2}\right)<\frac{1}{2}}
$$

$$
\begin{aligned}
& -\frac{1}{q} \cdot i \cdot \frac{i+1}{2}<\ln \left(\frac{1}{2}\right)=-\ln (2) \\
& \approx i^{i \cdot(i+1)}>\underbrace{q \cdot 2 \cdot \ln (2)}_{C_{1} \cdot q} \\
& i \in \theta(\sqrt{g})
\end{aligned}
$$

gleiche laufzeit wie bei Shanks, ohne Platzverbranch, aber nicht determistriscl,

Mbung:
Implementienng in bel.
Prozrammiersprache

$$
\begin{aligned}
& \text { Pollard-Folge } \\
& (y, k, l) \rightarrow(y, k, l) \\
& (y, k, l) \rightarrow(y, l, l) \rightarrow(y, h, l) \\
& (y, l, l)
\end{aligned}
$$

Eingabe: g, h, p, q
Programm lóst $g^{x} \equiv h$ and p

$$
\Rightarrow\left(g^{x}\right)^{\frac{p-1}{q}}=h^{\frac{p-1}{q}} \bmod p
$$

$G^{x} \equiv H \bmod p$
Pollard-Folge mit G, H, P
Ausgabe y, k, l

$$
y, k, l
$$

$\#$ Schin the

