5. User Identities

269

270

5. User Identities		Which UIDs do processes have?
		 RUID: real User-ID who starts the process this is also inherited from parent processes EUID: effective User-ID
		decides about access to system ressources these two are different only if setuid-bit set -r-sr-xr-x 2 root wheel 5828 Jan 12 08:41 /usr/bin/passwd this is controlled by the system call execve()
	268 5.	User Identities

Users and Groups unique identifier for each user is a *numeric UID* (user id), UID=0 is super user, usually called root a user is member of one or more groups one group is the principal group, the one found in /etc/passwd this group is used as group owner for files the user created, unless he uses newgrp other group memberships are located in /etc/group

Who am I?

Which UID do I have? Command Shell:

\$ id uid=2030(sysi30) gid=1000(stud) groups=1000(stud) Which UID do I have? C-program: uid_t u; /* this usually is a 16--bit--integer */ u=getuid(); There is a command \$ who am I but it doesn't really show who I am ... root ttyp1 Jun 13 23:20 (localhost) ...but who that terminal belongs to.

272

Why should we want to do that?

- permission issues that are not solved by the filesystem
- security principle of least privilege

5. User Identities

5. User Identities

274

Managing UIDs: Programmer's View

functions that work with UIDs

setuid() different historical implementations

 \sim *setuid mess*, read article

http://yarchive.net/comp/setuid_mess.html

getuid()	return real UID
geteuid()	return effective UID
setuid()	set effective UID (root: EUID+RUID)
seteuid()	set effective UID
setreuid()	set real and effective UID

275

5. User Identities

276

5. User Identities

Managing Users: Files (Linux/Solaris)

5. User Identities

282

Examples

outdated DES is default method (and fallback) for passwords

openssl passwd -salt AbCdEfG secret_password Warning: truncating password to 8 characters AbKLsS6u5sAh6

several systems today use MD5

openssl passwd -1 -salt AbCdEfG secret_password \$1\$AbCdEfG\$PPiziSx3vbgV1HnIvpJAZ0

5. User Identities

Managing Users: Files (BSD)

-rw----- 1 root wheel /etc/master.passwd

daemon:*:1:1::0:0:system processes:/root:/usr/sbin/nologin

-rw-r--r-- 1 root wheel 1357 Mar 12 12:35 /etc/passwd

daemon:*:1:1:system processes:/root:/usr/sbin/nologin

name PWD UID GID class pwd-change expire descr. home dir shell

root:\$1\$8Mj4lzRQ\$...:0:0::0:0:Charlie &:/root:/bin/csh

toor:*:0:0::0:0:Bourne-again Superuser:/root:

user1:*:1000:1000::0:0:System &:/:/bin/csh

• copy w/o passwords is stored in /etc/passwd

root:*:0:0:Charlie &:/root:/bin/csh

toor:*:0:0:Bourne-again Superuser:/root:

user1:*:1000:1000:System &:/:/bin/csh

• user database is /etc/master.passwd

280

Attacks	
invert Hashing / Encryption →analyze algorithm, very hard (crypto research topic)	
dictionary attack (variations of dictionary words)	
brute force (= exhaustive search)	

286

	Dictionary Attack
Aachen	250d6e3dc34afb195271904349fcf790
Aachener	bb6fae8a70240eb9f26b0c8a53345d08
Aachenerin	107b911e2cec78856a4676ea3ce16f92
Aachenerinnen	657b25a7aff45f9434c36d4b1479cde3
Aachenern	${\tt 6bc4b0cbdda46a3c30b19d3a1a6fbf5c}$
zytotoxischer	9b64262fe97427370242dbc4061722ba
zytotoxisches	1efec802b37771252068b36ee1ce0067
zzgl	71832 d182 a 57 a 01 f13 b 11014 a 1264 c f7
135,000 words in	German Duden (2^{17})

5. User Identities

		Brute 1	Force At	tack	
00000000000	00000000	0000000	000000		
0000000000	00000000	0000000	000001		
0000000000000000	00000000	0000000	000002		
0000000000000000	00000000	0000000	000003		
0000000000000000	00000000	0000000	000004		
fffffffff	fffffff	fffffff	fffff		
2^{128} bit string	gs of lengt	h 128			
	5	-			

5. User Identities

284

Other Authentication Methods (1/2)

• Challenge/Response

- server sends x, client sends MD5(x + pass) to server
- used in APOP, POP3-authentication
- attacked in 2008 (Leurent)
- drawback: clear-text passwords on the server
- One-Time-Passwords
 - a random password list (strong PRNG needed)
 - used in PIN/TAN, S/Key, OPIE
 - OPIE (library) One time Passwords In Everything
 - drawback: store password lists

Other Authentication Methods (2/2)

- Public-Key-Crypto
 - used in SSH
 - explained later in this course
- Secure Remote Password protocol
- Kerberos ticket-granting-ticket

A Note on Secure One-Time-Passwords and TANs (2) Implementation: INIT: system stores x4 the user enters x3 as his first password the system compares h(x3) = x4, if unequal, permission denied the system stores x3 next time the user enters x2 the system compares h(x2) = x3, ... >>system does not need to store the whole list, only the last used password

288

290

Which Future Key–Derivation–Function?

GPU- and ASIC-unfriendly, the brute-force-attacking devices

- not 32-bit-based
- huge memory requirements (more than a GPU-thread can handle)
- lots of data dependent branching (no similar results in each thread)
- \sim not necessarily standard hash functions (\sim scrypt?)

May 2014:

specialized ASIC mining hardware for scrypt-based cryptocurrencies.