
4. Processes 229

Semaphores

an IPC mechanism

inter-process communication

needed if two processes share a common resource, primarily memory

shared memory

4. Processes 230

Shared Memory Problem

assume value 0 in adress 0x10000000

Process 1 writes value 29 to address 0x10000000

Process 2 reads from address 0x10000000

when process 2 reads from 0x10000000, does it read a 0 or a 29 ?

4. Processes 231

Problem

• perhaps process 1 was stopped

• perhaps process 2 was stopped

• perhaps one of them runs at lowest priority

• perhaps one of them delayed because of a I/O problem

• . . .

process 2 must be stopped before reading until process 1 has written

4. Processes 232

Semaphores: View of Process

Semaphore contains 0 ❀

I want to read. . .

(P–Operation)

I am allowed to read. . .

(someone did V–Operation)

Semaphore contained ≥ 1

4. Processes 233

Theory of Semaphores

invented by Dijkstra 1968

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

critical section: only one process is allowed to enter CS

P–Operation: (dutch ,,passeren”)

• process wants to enter CS,

• but is blocked if some other process in CS

• in CS, process allocated the resource

V–Operation: (dutch ,,vrijgeven”)

• process leaves CS,

• releases resource

4. Processes 234

UNIX: Semaphore Set

a vector of n semaphores comprise a semaphore set

semaphore: (semaphore ID, semaphore number)

obtain a semaphore set by semget()

operations on semaphore set by semop() : P, V

remove semaphore set by semctl()

4. Processes 235

Semaphore Semantics

• semaphore has integer values

• normal P–Operation corresponds to –1

(which is blocked if semaphore value = 0)

• normal V–Operation corresponds to +1

can use other values than ±1

P–Operation can be made non–blocking

4. Processes 236

Code Example: new semaphore set

/* create new semaphore set with n semaphores, return semid */

int new_sem(int n)

{

return semget(IPC_PRIVATE, n, SEM_A | SEM_R);

}

4. Processes 237

Code Example: operation on semaphore set

int operation_p(int semid) /* enter critical region */

{

struct sembuf sb;

sb.sem_num = 0;

sb.sem_flg = 0;

sb.sem_op = -1;

if (semop(semid, &sb, 1) < 0) /* 1 operation */

{

perror("semop() in operation_p()");

return 0; /* false, error */

}

return 1; /* true, success */

}

4. Processes 238

Code Example: delete semaphore set

/* delete semaphore set semid */

int delete_sem(int semid)

{

if (semctl(semid, 0, IPC_RMID) < 0)

{

perror("semctl(sem, 0, IPC_RMID, 0)");

return 0; /* error removing semaphore */

}

return 1; /* success */

}

4. Processes 239

UNIX: Semaphore Special Features

• semaphores exist after process is terminated

use ipcrm or semctl()

• access rights user/group/other for read/alter

• more than 1 semaphores in 1 operation

• counting semaphore instead of binary semaphore

• can UNDO operations if process is terminated

4. Processes 240

UNIX: Shared Memory Segment

a shared memory segment shared memory ID

allocate a shared memory segment by shmget()

obtain the pointer to segment by shmat()

perform operations on this segment by using that pointer

remove shared memory segment shmctl()

4. Processes 241

UNIX: SEM, SHM, MSGQ admin commands

ipcs shows these objects (IPC status)

ipcrm removes these objects

4. Processes 242

Signals

A signal is a reporting method for exceptional events.

A signal my be viewed as an asynchronous input to a process.

A signal is raised by . . .

• an error (by OS kernel)

• an external event (by OS kernel)

• an explicit request (by a process)

❀time of receiving a signal is unpredictable

4. Processes 243

Signal Delivery

generation of signal by process P2 with destination P1

−→ most signals (may be) blocked

−→ pending

−→ delivery (on system call/page fault/clock interrupt)

−→ action

4. Processes 244

Signal Action

• accept default action

– ignore

– stop

– terminate

• ignore signal

• install signal handler

see signal(3)

4. Processes 245

Signal Examples

• division by zero

• accessing memory not allocated by the process

– segmentation fault (invalid access to valid memory)

– bus error (access to an invalid address)

• I/O errors (reading from pipe which has no writer)

• child exit or stop

• timer expires

• process termination/stopping by user (Strg+c,Strg+z)

• hangup (user shell terminates, notifies all processes)

4. Processes 246

Signals for the Shell Programmer

avoid hangup signals by starting processes with nohup

nohup ./long_running_process &

catch signals with trap

trap "rm $TEMP_FILE; exit" SIGHUP SIGINT SIGTERM

4. Processes 247

Sending a Signal

Shell command kill.

System call kill().

int kill(pid_t pid, int sig);

Example:

kill -1 9518

kill -HUP 9518

send both the hangup signal to process 9518

Note: /bin/kill is the original – maybe shell built-in command

4. Processes 248

Signal Types (1)

No Name Default Action Description

1 SIGHUP terminate process terminal line hangup

commonly used for causing servers to reread configuration

2 SIGINT terminate process interrupt program

STRG+C to terminate process

3 SIGQUIT create core image quit program

tell process to shutdown gracefully

4 SIGILL create core image illegal instruction

5 SIGTRAP create core image trace trap

process being debugged has reached a break point

4. Processes 249

Signal Types (2)

6 SIGABRT create core image abort program (formerly SIGIOT)

used when calling abort()

7 SIGEMT create core image emulate instruction executed

historical reasons, seldom used, meaning varies

8 SIGFPE create core image floating-point exception

9 *SIGKILL* terminate process kill program

cannot be caught/ignored

10 SIGBUS create core image bus error

CPU detects error on data bus (invalid address)

4. Processes 250

Signal Types (3)

11 SIGSEGV create core image segmentation violation

process tries to access a protected memory location

12 SIGSYS create core image non-existent system call invoked

13 SIGPIPE terminate process write on a pipe with no reader

14 SIGALRM terminate process real-time timer expired

15 SIGTERM terminate process software termination signal

tell process to clean up and terminate, default signal of kill command

4. Processes 251

Signal Types (4)

16 SIGURG discard signal urgent condition on socket

urgent data on socket (see TCP segment format)

17 *SIGSTOP* stop process stop

cannot be caught/ignored, process waits for SIGCONT

18 SIGTSTP stop process stop signal (keyboard)

STRG+Z on keyboard, process waits for SIGCONT

19 SIGCONT discard signal continue after stop

cannot be ignored but can be caught

20 SIGCHLD discard signal child status has changed

child has stopped or exited

4. Processes 252

Signal Types (5)

21 SIGTTIN stop process background read attempted

process waits for SIGCONT

22 SIGTTOU stop process background write attempted

stop only if tty has TOSTOP attribute, process waits for SIGCONT

23 SIGIO discard signal I/O is possible on a descriptor

enabled with fcntl()

24 SIGXCPU terminate process cpu time limit exceeded

25 SIGXFSZ terminate process file size limit exceeded

4. Processes 253

Signal Types (6)

26 SIGVTALRM terminate process virtual time alarm

"CPU user time" alarm

27 SIGPROF terminate process profiling timer alarm

"CPU user+system time" alarm

28 SIGWINCH discard signal Window size change

columns or rows of terminal are adjusted

29 SIGUSR1 terminate process User defined signal 1

30 SIGUSR2 terminate process User defined signal 2

4. Processes 254

Signal Handler (what is it)

In order to handle a signal, a signal handler is needed.

This is a C function with prototype

void handler(int sig);

The parameter sig contains the number of the signal.

4. Processes 255

Signal Handler (how to install)

signal() or sigaction() function.

signal(SIGTERM, handler); /* use the handler */

install default action or ignore signal

signal(SIGTERM, SIG_DFL); /* set the default action */

signal(SIGTERM, SIG_IGN); /* ignore this signal */

4. Processes 256

Signal Handler (what happens)

when a signal is generated for a process

further occurrences of this signal are blocked

after return from the handler() the handled signal is unblocked

the process continues from where it left off when the signal occurred

exception: some system calls are restarted

open(2), read(2), write(2), sendto(2), recvfrom(2),

sendmsg(2), recvmsg(2), ioctl(2), wait(2)

if data already transferred, then they return partial success

change system call behaviour with siginterrupt()

4. Processes 257

Signal Handler (child processes)

the child inherits after fork() the installed signal handlers

the child resets the handled signals after execve()

the child ignores signals that are ignored by the parent

if a child exits the parent is sent a SIGCHLD

if a process ignores SIGCHLD, no zombies will be created

4. Processes 258

Signal Handler (why sigaction())

can restore original handling of signal

can block other signals during execution of handler

4. Processes 259

Signal Handler (sigaction)

int sigaction(int sig,

const struct sigaction *act,

struct sigaction *oact);

struct sigaction {

union { /* signal handler */

void (*__sa_handler)(int);

void (*__sa_sigaction)(int, siginfo_t *, void *);

} __sigaction_u;

sigset_t sa_mask; /* signal mask to apply */

int sa_flags; /* see signal options */

};

4. Processes 260

Signal Handler (use of sigaction)

...

struct sigaction action;

sigset_t signal_mask;

/* all signals to be blocked during handler() */

sigfillset(&signal_mask);

/* fill action structure */

action.sa_handler = handler;

action.sa_mask = signal_mask;

action.sa_flags = 0;

/* install handler */

sigaction (SIGTERM, &action, NULL);

...

4. Processes 261

Signal Handler (print signal names)

void psignal(unsigned sig, const char *s);

print message according to signal number sig

char * strsignal(int sig);

return pointer to message according to signal number sig

4. Processes 262

Examples (1)

ftpd.c – SIGCHLD ❀ wait for child processes

3273 void

3274 reapchild(int signo)

3275 {

3276 while (waitpid(-1, NULL, WNOHANG) > 0);

3277 }

4. Processes 263

Examples (2)

ftpd.c – SIGURG ❀ handle urgend TCP data

223 static volatile sig_atomic_t recvurg;

...

2754 static void

2755 sigurg(int signo)

2756 {

2757

2758 recvurg = 1;

2759 }

2760

4. Processes 264

Examples (3)

ftpd.c – SIGQUIT ❀ handle quit from keyboard

666 static void

667 sigquit(int signo)

668 {

669

670 syslog(LOG_ERR, "got signal %d", signo);

671 dologout(1);

672 }

4. Processes 265

Signal Handler (summary)

handler = exception handling

the handler should be. . .

• short: do only one thing

• indicating its use in a global variable volatile int

• not time–consuming

• not implementing functional features

• not continue on program bugs (SIGBUS, SIGSEGV, SIGFPE)

sigaction() preferred to signal()

