
2. Files / Inodes 140

UNIX Time

UNIX time data: seconds elapsed since

01.01.1970, 00:00:00 UTC.

Stored in a signed 32–bit integer.

UTC = universal time coordinated

GMT = Greenwich Mean Time

CET = Central Europe Time

CEST = Central Europe Summer Time

2. Files / Inodes 141

UNIX Time Overflow

One year has 31536000 seconds.

One leap year has 31622400 seconds.

Four years have 126230400 seconds.

231 seconds are 2147483648 seconds (signed 32-bit).

2147483648 = 17 · 126230400 + 1566848

1566848 = 18 · 24 · 3600 + 11648

11648 = 3 · 3600 + 14 · 60 + 8

So the overflow occurs after

17 · 4 = 68 years, 18 days, 3 hours, 14 min and 8 sec

which is the

19.01.2038, 03:14:08 GMT.

2. Files / Inodes 142

UNIX Time Overflow (2)

Solutions to the overflow problem:

• use unsigned 32-bit integer,

overflow occurs after 2 · 68 = 136 years in the February of 2106

problem: programmers rely on signed integer,

including positive and negative differences of time_t values

• use signed 64-bit integer, overflow in the year 292.277.026.596

(default on 64-bit operating systems)

open question: will there be still 32-bit systems in the year 2038?

• embedded CPUs?

• file systems?

2. Files / Inodes 143

Hardware Clock and Time Zones

booting ❀ read RTC (real time clock, 32Hz) ❀ system time

Problems when RTC has local time:

• computer travels in different time zones

• daylight savings time

• virtualization, two operating systems

❀ RTC should not have local time (Windows 7/8 has)

Windows solution: create registry key

SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal

2. Files / Inodes 144

UTC, universal time coordinated

Set your hardware system clock to

UTC.

basis of the worldwide system of civil time since 1972.

UTC replaced Greenwich Mean Time (GMT), because of ambiguity.

Before 1925, the GMT day started at noon.

UTC is the basis of the worldwide system of civil time. UTC is kept in time

laboratories using atomic clocks. UTC is distributed via satellite/radio signal.

Set your local system time by using time zones.

2. Files / Inodes 145

UT1

Problem: a second is 1/86400 of a day (one rotation of earth)

. . . but earth rotations don’t have constant duration

• earth rotates slower and slower over time

• day length gets longer and longer over time

• by definition, the length of a second gets longer and longer over time

The time determined by the rotation of the Earth is called UT1.

Rotation time of earth needed for locations of satellites.

2. Files / Inodes 146

UTC/UT1 Deviation

2. Files / Inodes 147

UTC and UT1

UTC and UT1 should not deviate too much

❀ correct UTC by 1 leap second every 12-18 months (27s since 1972)

6 month advance notice

latest corrections:

Jun 30, 1997, 23:59:60

Dec 31, 1998, 23:59:60

Dec 31, 2005, 23:59:60

Dec 31, 2008, 23:59:60

Jun 30, 2012, 23:59:60

Jun 30, 2015, 23:59:60

Dec 31, 2016, 23:59:60

NB: GPS time = UTC as of Jan 6, 1980 – no leap seconds

2. Files / Inodes 148

UTC – Decision to Retain Leap Seconds

Civil Global Positioning System Service Interface Committee 2007

mailed vote on stopping leap seconds

reported computer problems after June 30, 2012

decision, World Radio Conference in 2015

pro elimination: France, Italy, Japan, Mexico, USA

contra elimination: Canada, China, Germany, UK

see https://en.wikipedia.org/wiki/Leap second

2. Files / Inodes 149

UTC

Cesium Clock CS2 of PTB Braunschweig, origin of DCF77 signal

2. Files / Inodes 150

TAI (1)

Temps atomique international

weighted average of the time kept by over 200 atomic clocks

2. Files / Inodes 151

TAI (2)

International Bureau of Weights and Measures (BIPM, France)

2. Files / Inodes 152

Time Zones

Which time does the user see?

$ date

Sun May 11 20:53:35 CEST 2014

Where does the CEST come from?

Time zone information contained in zoneinfo files, for example

/usr/share/zoneinfo/Europe/Berlin

Each user may define his own time zone (New York):

$ TZ=EST date

Sun May 11 13:53:36 EST 2014

2. Files / Inodes 153

Time Zone Data

See

/usr/share/zoneinfo/

for example

$ zdump /usr/share/zoneinfo/Europe/*

/usr/share/zoneinfo/Europe/Amsterdam Tue May 7 08:51:40 2014 CEST

/usr/share/zoneinfo/Europe/Andorra Tue May 7 08:51:40 2014 CEST

/usr/share/zoneinfo/Europe/Athens Tue May 7 09:51:40 2014 EEST

/usr/share/zoneinfo/Europe/Belgrade Tue May 7 08:51:40 2014 CEST

/usr/share/zoneinfo/Europe/Berlin Tue May 7 08:51:40 2014 CEST

/usr/share/zoneinfo/Europe/Bratislava Tue May 7 08:51:40 2014 CEST

/usr/share/zoneinfo/Europe/Brussels Tue May 7 08:51:40 2014 CEST

/usr/share/zoneinfo/Europe/Bucharest Tue May 7 09:51:40 2014 EEST

/usr/share/zoneinfo/Europe/Budapest Tue May 7 08:51:40 2014 CEST

2. Files / Inodes 154

Time Zones

at system installation time, such a file is copied to

/etc/localtime

dump the contents

$ zdump -v /etc/localtime |grep 2014

Sun Mar 30 00:59:59 2014 UTC = Sun Mar 30 01:59:59 2014 CET isdst=0

Sun Mar 30 01:00:00 2014 UTC = Sun Mar 30 03:00:00 2014 CEST isdst=1

Sun Oct 26 00:59:59 2014 UTC = Sun Oct 26 02:59:59 2014 CEST isdst=1

Sun Oct 26 01:00:00 2014 UTC = Sun Oct 26 02:00:00 2014 CET isdst=0

2. Files / Inodes 155

Time Zones: Which one is installed?

Which one is it? A soft link would be better:

/etc/localtime -> /usr/share/zoneinfo/Europe/Berlin

If not, can find it by checksums:

sha1 /usr/share/zoneinfo/Europe/* | head -5

SHA1 (/usr/share/zoneinfo/Europe/Amsterdam)

= aee37bc42d7fb5061913609ce1155bc4a53d9000

SHA1 (/usr/share/zoneinfo/Europe/Andorra)

= 1ce238588cd3cbca3f9b620fe93fbff8a2f9d2bc

...

SHA1 (/usr/share/zoneinfo/Europe/Berlin)

= b065fae6bda0f0642ca6a52b665768e34a99d213

...

SHA1 (/etc/localtime)

= b065fae6bda0f0642ca6a52b665768e34a99d213

2. Files / Inodes 156

References (Time)

Why the RTC clock should keep UTC time

http://www.cl.cam.ac.uk/~mgk25/mswish/ut-rtc.html

On time zones, an astronomical view

http://aa.usno.navy.mil/faq/docs/UT.html

On the chrystal oscillator, used by the BIOS

http://en.wikipedia.org/wiki/Crystal_oscillator

2. Files / Inodes 157

NTPD – Network Time Protocol Daemon

Server which receives or distributes its system time

Protocol specification in RFC 958 (1985)

Port 123/udp

stratum 0 atomic clock

stratum 1 NTPD with signal from atomic clock

(for example ptbtime1.ptb.de)

stratum 2 NTPD with signal from stratum 1

stratum 3 NTPD with signal from stratum 2

...

2. Files / Inodes 158

NTP–Stratum Concept

2. Files / Inodes 159

NTP–Clients

ntpd

rdate

ntpdate

sntp

2. Files / Inodes 160

NTP–Clients Query Server

$ ntpdate -q ntp1.rz.uni-saarland.de ntp2.rz.uni-saarland.de

ntp3.rz.uni-saarland.de

server 134.96.7.2, stratum 3, offset 0.074765, delay 0.02667

server 134.96.7.14, stratum 2, offset 0.056386, delay 0.02605

server 134.96.7.18, stratum 2, offset 0.059031, delay 0.02626

11 May 17:22:55 ntpdate[39524]: adjust time server 134.96.7.14

offset 0.056386 sec

3. Shell 161

The Shell

3. Shell 162

The Shell

The standard shell is the Bourne Shell /bin/sh.

The Bourne Shell is available on every UNIX system.

There are related shells of sh: bash, ksh, ash, zsh. . .

There are C–syntax based shells: csh, tcsh,. . .

The Shell creates processes and waits for them to terminate if the

command is not followed by &.

3. Shell 163

FreeBSD’s sh History

HISTORY

A sh command, the Thompson shell, appeared in Version 1 AT&T UNIX. It

was superseded in Version 7 AT&T UNIX by the Bourne shell, which inher-

ited the name sh.

This version of sh was rewritten in 1989 under the BSD license after the

Bourne shell from AT&T System V.4 UNIX.

(from sh’s manual page)

3. Shell 164

Overview of sh

• started after login (change shell with chsh)

• reads lines (from terminal/file)

• interactive/non-interactive

• programming language with control constructs

3. Shell 165

The Shell: Executing Commands

• tries to execute first command line argument

• built-in command (cd, echo, fg, bg,. . .) ?

• contains ,,/” ? Attempt to call it directly.

• otherwise do PATH search

3. Shell 166

The Shell: Parser

• reads whole lines (until [newline] = ASCII 10)

• words are separated by meta or control characters:

[Space] [Tab] | & () ; < >

• control operators perform control functions:

|| & && ; ;; () | [newline]

• meta or control characters lose their special meaning by quoting

them

– by \ (backslash affects next char)

– by ’ (single quote affects all chars till next ’)

– by " (single quote affects most chars till next ")

3. Shell 167

The Shell: Expansion

Some expressions are substituted by other strings.

The order of the substitutions is important.

1. brace expansion ({})

2. tilde expansion (~)

3. variable/parameter expansion ($)

4. command substitution (‘cmd‘ or $(cmd))

5. arithmetic expansion ($((expression)))

6. word splitting (meta+control characters)

7. pathname expansion (* ? [])

8. quote removal ("...", ’...’,\)

3. Shell 168

The Shell: Expansion Examples

3. Shell 169

$ ls -l file{1,2}

-rw-r--r-- 1 dw users 0 Apr 12 13:11 file1

-rw-r--r-- 1 dw users 0 Apr 12 13:11 file2

$ echo ~root

/root

$ echo ~{sysi01,sysi07}

/home/sysi01 /home/sysi07

$ echo $USER

dweber

$ echo ~$USER

~dweber

$ echo $TERM

xterm

$ echo today is ‘date‘

today is Tue May 7 09:56:48 CEST 2013

3. Shell 170

$ echo $((3+9*5))

48

$ ls -l file?

-rw-r--r-- 1 dw users 0 Apr 12 13:11 file1

-rw-r--r-- 1 dw users 0 Apr 12 13:11 file2

-rw-r--r-- 1 dw users 0 Apr 12 13:11 file3

$ ls -l *2

-rw-r--r-- 1 dw users 0 Apr 12 13:11 file2

-rw-r--r-- 1 dw users 0 Apr 12 13:11 otherfile2

3. Shell 171

Shell Programming

• invoking arbitrary commands, programs, shell scripts

• using control structures

• setting/reading environment variables

all variables are strings

may occasionally be interpreted as an integer

3. Shell 172

Shell Programming: Variables

predefined are

• command line arguments in $0,$1,...$9

• number of command line arguments in $#

• all parameters in $* and $@

• return value of last command in $?

• own PID in $$

a user may set his own variables such as

var=value

(no spaces here!)

3. Shell 173

Shell Programming: Comments

use a hash sign = ,,#”

some German notations (from Wikipedia)

Doppelkreuz Gartenzaun Gatter *Hash* Kanalgitter

Knastfenster Lattenkreuz Lattenzaun Mengenkreuz Nummer

Nummernzeichen Oktothorp Quadrat Raute Rhombus

Schweinegatter Teppich Tic-Tac-Toe

special case: #! in first line identifies shell interpreter

#!/bin/sh

3. Shell 174

Shell Programming: Control Structures

1. for ... do ... done

2. for ... in ... do ... done

3. while ... do ... done

4. until ... do ... done

5. if ... then ... else ... fi, see also elif

6. case ... esac

there is a break statement to leave loops

3. Shell 175

Shell Programming: Control Operators (AND)

command1 && command2

command2 is executed only if command1 returns true

example:

mkdir /my/new/dir && cd /my/new/dir

3. Shell 176

Shell Programming: Control Operators (OR)

command1 || command2

command2 is executed only if command1 returns false

example:

mkdir /my/new/dir || echo "could not create new directory"

3. Shell 177

Shell Programming: Conditions (if/while)

the test command is used for all conditions

see the manual page, mostly needed conditions are

test -e file file exists

test -r file file exists and is readable

test -w file file exists and is writable

test -x file file exists and is executable

test -d file file exists and is a directory

test -s file file exists and has a size greater than zero

test STRING1 = STRING2 the strings are equal

test STRING1 != STRING2 the strings are not equal

test STRING1 != STRING2 the strings are not equal

test INTEGER1 -eq INTEGER2 the integers are equal

for integers we analogously have -ne -ge -gt -le -lt

3. Shell 178

Shell Programming: Example for (1)

#!/bin/sh

our for loop starts here

for x in 1 2 3 ; do

cp $x.doc $x.txt

done

our for loop ends here

exit 0 # return sucessfully

3. Shell 179

Shell Programming: Example for (2)

executing this gives nasty error messages:

$ chmod +x job

$./job

cp: cannot stat ‘1.doc’: No such file or directory

cp: cannot stat ‘2.doc’: No such file or directory

cp: cannot stat ‘3.doc’: No such file or directory

3. Shell 180

Shell Programming: Example for (3)

#!/bin/sh

our for loop starts here

for x in 1 2 3 ; do

if test -r $x.doc ; then # check the file

cp $x.doc $x.txt

fi

done

our for loop ends here

exit 0 # return sucessfully

note: the ; terminates the condition

