
Cryptanalyti Results on Trivium

Håvard Raddum

Department of Informatis, University of Bergen, N-5020 Bergen, Norway

Abstrat. Trivium is a stream ipher submitted to the eSTREAM projet in ECRYPT. It

has a simple and elegant design and is very fast, and so far no weaknesses have been reported.

In this paper we use a novel tehnique to try to solve a system of equations assoiated with

Trivium. Due to the short key-length ompared to the size of the internal state of Trivium

(80 to 288 bits), we do not get an e�ient attak on the full Trivium, but redued versions

orresponding to the design's 'basi onstrution', is broken by this approah.

1 Introdution

The eSTREAM projet within ECRYPT issued a all for seure and fast stream iphers

in November 2004. The response from the ryptographi ommunity has been good, with

34 proposals submitted. Some of these have been broken, and others again have exhibited

weaknesses. Sine eSTREAM allows �tweaks� (minor modi�ations to algorithm), several of

the attaks have been made invalid after hanging some of the spei�ation omponents.

Trivium [1, 2℄ has remained unhanged sine it was submitted, and at the time of writing

there is only one paper [3℄ on the eSTREAM website that has any ryptanalysis of Trivium.

The onlusion of this paper is that Trivium is seure against a linear sequential iruit

approximation attak.

In this paper we set up systems of sparse equations desribing the full Trivium and

redued versions, and try to solve them by using a new tehnique desribed in [4℄, but as

yet unpublished in a proper journal or proeedings. By this approah we an show that

the full Trivium is still not broken, but that redued versions with two registers instead

of three is broken signi�antly faster than exhaustive searh. One point we would like to

emphasize is that sine our approah is algebrai in nature (solving equation systems) the

attak requires very little known key-stream, as opposed to most other types of attaks that

typially requires enormous amounts of known key-stream. This makes our kind of attak

muh more threatening in a real-world setting.

The paper is organized as follows. As our tehnique is unfamiliar to most, in Setion 2

we will thoroughly desribe the method of solving equation systems we use, with an example

to help the reader appreiate the ideas behind this approah. In Setion 3 we speify how

the redued versions of Trivium were made, and show how to build an assoiated sparse

equation system from these. In Setion 4 we present the results on the omplexity of solving

these systems, and onlusions are drawn in Setion 5.

2 Construting a graph from a sparse system of equations

In this setion we will show how to build a graph from a system of equations. Throughout

the whole paper we will only onsider equations where the variables have values in GF (2).
We will desribe the graph onstrution in the general ase, where we assume we are given

a system of m equations E1, . . . , Em in n variables x0, . . . , xn−1. To help the reader get

familiar with the methods we will use the following spei� example system along the way:

E1 : x2x0 + x1x0 + x2 + x0 = 0
E2 : x3x1x0 + x3x1 + x3x0 + x3 + x1 + x0 + 1 = 0
E3 : x4x0 = 0
E4 : x4x3x1 + x3x1 + x1 = 0
E5 : x4x2 + x4 + x2 + 1 = 0

2.1 Construting the graph

Eah equation in our system will orrespond to one vertex in the graph. This vertex will be

labeled by the indies of the variables that make up the orresponding equation, where the

indies are listed in dereasing order. In our example system, the vertex orresponding to

E1 will have the label (210). Eah vertex in the graph will have a set of variables assoiated

with it.

De�nition 1. A vertex in the graph is alled a symbol, and the variables assoiated with

symbol S is denoted by X(S).

We initialize the graph onstrution by reating one symbol for eah equation. The rest

of the graph is reated aording to the following proedure:

For eah pair of initial symbols S and T , let u = X(S) ∩ X(T). If there already

exists a symbol Q with u = X(Q), we draw edges from Q to S and T , if these edges

do not already exist. If there is no symbol with label u, a symbol Q is reated with

u = X(Q), and edges are drawn from Q to S and T .

There will be no edges between initial symbols, or between symbols reated by inter-

seting variable sets of initial symbols, so the graph will be bipartite. Following this simple

reipe, the graph assoiated with the example system will look like this:

431 40210 310 42

2 10 1 3140

2.2 Transferring the information in the equation system to the graph

We have shown how to make the verties and the edges in the graph assoiated with a

system of equations. To make the orrespondene between the system of equations and the

graph omplete, we need to arry the information the system has about possible solutions

into the graph. To do this we use the following de�nition.

De�nition 2. A on�guration for an equation E is an assignment of values to the vari-

ables in E.

An equation E orresponds to a symbol S, and a on�guration for E (equivalently, for

S) an be represented as a bit-string of length |X(S)|. A bit in a spei� position in the

string ontains the value for the variable loated in the same position in X(S).

We give every symbol orresponding to an equation a list of all on�gurations satisfying

the assoiated equation, and denote the list of on�gurations for symbol S by L(S). This will
arry all information every equation has about the solution, into the graph. Eah symbol

not assoiated diretly with an equation will also have a list of on�gurations. The list of

on�gurations for one of these symbols, S, will initially onsist of all bit-strings of length

|X(S)|.

Note that produing the list of on�gurations for an equation ontaining r variables has

omplexity 2r
. We need (in general) to run through all 2r

strings of length r to �nd out

whih on�gurations that satisfy the equation, and whih that do not. Also, the expeted

size of the on�guration list of a boolean equation is 2r−1
.

This means we require our system of equation to be sparse, in the sense that no single

equation onsists of too many variables. Systems oming from iphers tend to have this

property, depending on how many extra variables that are introdued when reating the

equations. As we shall see, the system we reate from Trivium has 954 variables all together,

but no single equation ontains more than 6 of them, and no symbol S has more than 32
on�gurations in its L(S).

Let us now ompute the on�guration lists of the equations of our example system,

and add them into the graph. The reader may verify that the on�guration lists of the �ve

equations are the ones shown below. The symbols not orresponding to equations have full

on�guration lists.

0 0 0
0 1 0
0 1 1
1 1 1

210
0 0
0 1
1 0

40
0 0 0
0 1 0
0 1 1
1 0 0
1 1 0

431
0 0 1
0 1 0
1 0 0
1 0 1
1 1 0

310

0 1

1 1
1 0

42

0
1

20 0
0 1
1 0
1 1

10
0 0
0 1
1 0
1 1

31

0
1

1
0
1

0
0
1

4

2.3 Solving the system by message-passing

We now proeed to desribe the ore algorithm for solving the system of equations. Every

solution of the system an be represented as an n-bit string, ontaining the values for

(xn−1xn−2 . . . x0) that solves the system. Eah equation in the system has to be satis�ed

with a solution, so for any symbol S assoiated with an equation, onatenating bits from

a solution into a string for X(S) will produe a on�guration found in L(S).
Our idea is to delete on�gurations that an not be part of a solution from the various

L(S). The goal is to remove all on�gurations from the lists, exept for those that are part

of a orret solution. If we are able to do this we an simply read the values of the remaining

on�gurations in the symbols to get a solution of the system.

Symbols that are onneted by edges an send messages about their on�guration lists to

eah other. A symbol reeiving a message may use that information to identify on�gurations

that an not possibly be part of a solution. How this an be done is detailed below, using

the following de�nition.

De�nition 3. Let S and T be two symbols suh that X(S) ⊂ X(T). A on�guration for

X(T) is said to over a on�guration for X(S) if the two are equal for all variables in

X(S).

2.4 Sending messages downwards

Let the symbols S and T be onneted with an edge, where T orresponds to an equation,

so X(S) ⊂ X(T). A message from T to S is a list of on�gurations for X(S), ontaining
exatly those on�gurations that are overed by at least one on�guration from the list in

T . These are the only possible values for the symbol S if T is to be satis�ed.

When S reeives the message, all on�gurations in L(S) not found in the message will

be deleted. These on�gurations an not be part of a solution sine it is impossible to satisfy

T with these values.

Example: The symbol (310) sends a message to (10):

0 0
0 1
1 0

10 0 0 1
0 1 0
1 0 0
1 0 1
1 1 0

310

10
0 0
0 1
1 0
1 1

0 0 1
0 1 0
1 0 0
1 0 1
1 1 0

310

10
0 0
0 1
1 0
1 1

(310) sends message
about the value of (10)

(10) deletes one
configuration

2.5 Sending messages upwards

Let us still onsider two symbols S, T , where X(S) ⊂ X(T). The message S sends to T is

simply L(S).
When T reeives the message, any on�guration in L(T) that does not over any on-

�guration in the message will be deleted. None of the on�gurations deleted an be part of

a solution, sine it is impossible to satisfy S with them.

Continuing the example above, we let (10) send a message to (210):

0 0
0 1
1 0

10

Message about (10)
is sent to (210)

210
0 0 0
0 1 0
0 1 1
1 1 1

0 0
0 1
1 0

10

210
0 0 0
0 1 0
0 1 1
1 1 1

0 0
0 1
1 0

10
Two configurations
are deleted in (210)

2.6 Making the graph agree

As an be seen from the examples above, the symbol (310), representing equation E2, has

ommuniated knowledge about the solution to (210) (equation E1) through the symbol

(10). This new information sets (210) in a position where it an send a message to (2), sine
x2 = 0 is the only possibility if (210) is to be satis�ed with its urrent on�guration list. This

shows that sending some messages an open up for others to be sent. In this way, we an

get a hain-reation of messages, deleting all on�gurations exept for those orresponding

to a solution.

The example system will be solved this way. We have got to the point where the symbol

(2) knows its only possible value is 0. This message an be sent to (42), ausing it to delete

all on�gurations exept for 10. This only leaves the possibility of the value 1 for the symbol

(4), et, et. In the end, every symbol will only be left with one on�guration, sine the

system has a unique solution (x4, x3, x2, x1, x0) = (1, 1, 0, 0, 0).
We all the proess of sending useful messages, messages that atually ause deletion

of on�gurations, the Agreeing algorithm. When the graph is left in a state where no more

useful messages an be sent we say that all the symbols in the graph agree.

Of ourse, making the graph agree does not neessarily solve the assoiated equation

system. If the amount of readily available information in the system is below some ritial

mass, the hain-reation of sending useful messages will die out before we an see a solution,

or it may be that the initial state of the graph does not allow any useful messages to be

sent in the �rst plae. The next subsetions deal with two strategies for overoming this

problem.

2.7 Splitting

The �rst of the methods for re-starting the Agreeing algorithm we have alled Splitting, and

is quite simple. When the graph reahes an agreeing state with no visible solution what we

do is the following: We fous on one symbol S, and split L(S) in two parts, L1 and L2.

We then replae L(S) with L1 or L2 and start the Agreeing algorithm again. The orret

on�guration for S (assuming unique solution) is found on either L1 or L2, so what we are

basially doing is guessing on whih part that ontains this on�guration. If it beomes lear

that the guess was wrong, we will run the Agreeing algorithm with the other list instead.

Guessing only one is generally not enough help for the Agreeing algorithm to solve

the system. In general, the symbols will again ome to an agreeing state with no apparent

solution after the �rst guess. Then we need to guess again, run the Agreeing algorithm one

more, and so on. Eah time we guess, we are guessing one bit of information, sine the

orret on�guration is found in either L1 or L2. One an see that guessing on the value of

a spei� variable is a partiular ase of splitting.

When will it beome lear that a guess was wrong? When we make a wrong guess

somewhere, we are deleting the orret on�guration from a symbol's on�guration list,

making it impossible to �nd a solution. What happens, possibly after making more guesses,

is that the Agreeing algorithm deletes all on�gurations in some L(S). When this happens

we will baktrak to the last guess made, and try the other possibility. If this also turns out

to be a dead end, we will baktrak to the guess before that, and try the other possibility

from that point, et.

What we are doing is going through a binary searh tree, looking for the solution of the

system. When we follow the branh of the tree orresponding to the orret guesses we �nd

a solution. The leaves of this tree will be the point where we either �nd a solution, or the

points where some L(S) beomes empty. The leaves will be at somewhat varying depths,

and the omplexity of this approah will be exponential in the average depth of the tree.

2.8 Gluing

The other main strategy for making the Agreeing algorithm start again we all Gluing. With

this method we do not do any guessing, but instead merge two symbols into one.

Let symbols S and T be given, and let X(S) = A ∪B, X(T) = B ∪C with A ∩C = ∅.
We will make a new symbol Z, with X(Z) = X(S) ∪X(T) and and de�ne the list L(Z) as

follows. The list L(Z) onsists of all on�gurations (a, b, c), where b is a on�guration for

B, (a, b) ∈ L(S), and (b, c) ∈ L(T). In other words, L(Z) onsists of all on�gurations that
over one on�guration in L(S) and one on�guration in L(T). The symbol Z = S ◦T is the

result of gluing the symbols S and T , and the on�guration orresponding to the solution

of the system is found on L(Z).
When our symbols reah an agreeing state, we an glue together symbols to reate new

symbols made from larger sets of variables, with more open information about the solution.

When gluing S and T together we disard S and T , sine all information in them are

ontained in S ◦ T . After gluing together several pairs of symbols the new set of symbols

will in general not be in an agreeing state. We an then onstrut a new graph from them,

and start the Agreeing algorithm again.

The prie to pay when gluing together symbols is longer on�guration lists. Assum-

ing S and T agree, the number of on�gurations in S ◦ T will be at least as big as

max{|L(S)|, |L(T)|}, and may be as big as |L(S)| · |L(T)|, depending on the size of

X(S) ∩X(T). In pratie we have to set a threshold and only glue together symbols that

produe on�guration lists with size below this threshold. This means we may run into ases

where we an not a�ord any symbols to be glued.

3 Trivium and its redued variants

Trivium has a simple and elegant design, making it a tempting andidate for ryptanalysis,

but so far no weaknesses have been reported. It is also very fast, making it a strong andidate

in eSTREAM as long as it is not broken.

Trivium operates on three registers of length 93, 84 and 111 bits. These registers may

also be regarded as onatenated into one register (s1, . . . , s288) of 288 bits. The following

pseudo-ode opied from [2℄, is a ompat but omplete spei�ation of how to generate one

bit z of the key-stream:

t1← s66 + s93

t2← s162 + s177

t3← s243 + s288

z← t1 + t2 + t3

t1← t1 + s91 · s92 + s171

t2← t2 + s175 · s176 + s264

t3← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

This proess is repeated until enough key-stream bits have been produed.

Trivium takes an 80-bit key (K1, . . . ,K80) and an 80-bit IV (IV1, . . . , IV80) for initial-
izing the registers. This is done as follows:

(s1, s2, . . . , s93)← (K1, . . . ,K80, 0, . . . , 0)

(s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)

(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)

The registers are then loked 4 ·288 times without produing any key-stream, and after

this key-stream generation is ready to start.

3.1 System of equations representing Trivium

We regard the state of the registers at the time when key-stream generation is about to start

as the initial state. We label these bits with the unknown variables s1, . . . , s288, so at this

point we have 288 unknowns and no equations. When loking Trivium one, we introdue

three new bits to the next state, whih an be expressed as non-linear ombinations of some

of the bits from the initial state. In order to keep the future equations sparse enough, we

let these three bits beome new variables, and get the following equations from the �rst

loking:

s289 = s66 + s91 · s92 + s93 + s171

s290 = s162 + s175 · s176 + s177 + s264

s291 = s243 + s286 · s287 + s288 + s69

In addition to this we get one equation from the known key-stream bit z:

z = s66 + s93 + s162 + s177 + s243 + s288

This proedure is repeated, so for eah loking of the ipher we get four equations and

three new variables. After loking the ipher 288 times we have 1152 equations in 1152
variables, so the knowledge of 288 onseutive key-stream bits should be enough to identify

the initial state uniquely.

We an redue the size of this system a little. Note that towards the end of generating

the equations, the new variables we introdue will atually never be used in an equation

given from the key-stream. The new bits entered into the registers are not used for key-

stream generation before the ipher has been loked 66 more times. This means that for

the last 66 lokings, we an drop the three equations representing the new bits oming into

the registers, and just make the equation from the key-stream bit without introduing new

variables. This yields a system of 954 equations in 954 variables, where all equations onsist

of 6 variables and have a list of 32 possible on�gurations.

If we an solve this system, we �nd the initial state of the ipher at the time key-stream

generation started, but we do not reover the key diretly. It is a straightforward task to

ompute the previous state from a given state, so knowing the state of the ipher at some

point we an lok Trivium bakwards to reah the state where the key and IV were loaded.

Hene solving our system is equivalent to �nding the key.

3.2 Redued variants

In [1, Fig. 4℄, the designers of Trivium desribe what they all the 'basi onstrution' of

the Trivium design. This is like the full Trivium, but with two registers instead of three.

This smaller ipher omes in two slightly di�erent versions. One where the key-stream bit

produed is the sum of two bits from the internal state, and one where the key-stream bit

is the sum of four bits from the state. We will all these variants for Bivium A and Bivium

B, respetively.

We have made a spei�ation of these two iphers, trying to keep them as lose as

possible to the full Trivium. Both variants have two registers of length 93 and 84, and the

state of these is given as (s1, . . . , s177). The pseudo-ode for loking Bivium A one is then

given as

t1← s66 + s93

t2← s162 + s177

z← t2

t1← t1 + s91 · s92 + s171

t2← t2 + s175 · s176 + s69

(s1, s2, . . . , s93)← (t2, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

The spei�ation of Bivium B is exatly the same, exept that z ← t2 is replaed by

z ← t1 + t2.

For both variants, the key and IV loading is the same as in Trivium (the third register

in Trivium, initialized with onstants, is removed), and the iphers are loked 4 · 177 times

before any key-stream is produed.

The equation systems representing Bivium A and B an be made the same way as for

the full Trivium. Eah loking introdues two new variables and three new equations. After

177 lokings we get a system of 531 equations in 531 unknowns, but like for Trivium we

an remove the last 2 · 66 equations representing new variables sine these variables are not

used in any key-stream equation. We then get systems of 399 equations in 399 unknowns.

The equations tying new variables to old ones are made up of 6 variables eah, but the key-

stream equations ontain 4 variables eah for Bivium B, and only 2 variables for Bivium A.

This di�erene will turn out to be ruial for the omplexities of solving these systems with

the methods proposed in Setion 2.

4 Solving the Equation Systems

Here we will report on the omplexities of solving the equation systems representing Bivium

A and B and Trivium by using the tehniques desribed in Setion 2.

4.1 Bivium A

Bivium A is the simplest of the three iphers onsidered, and should have the equation

system that is easiest to solve. Indeed, this is also the ase. The depth of the searh tree

when running the Splitting algorithm is roughly 29. The depth of the tree an be smaller

by gluing some of the symbols together before starting the Splitting algorithm. If we glue

together as many pairs of symbols we an, allowing new symbols to have on�guration lists

of size up to 1024, we get a graph where only 150 symbols orrespond to equations. The

depth of the searh tree is then about 21, and our program returned the orret initial state

in about one day. Bivium A is very weak.

4.2 Bivium B

The only di�erene between Bivium A and B is that key-stream equations from Bivium B

have four variables instead of two. This is enough to make the omplexity of solving Bivium

B's assoiated system of equations muh higher than for Bivium A.

The best approah we found for solving this system is to glue together pairs of symbols

yielding new symbols with on�guration lists of size 32, and then apply the Splitting method.

The omplexity of the Splitting method is O(2d), where d is the depth of the tree we

are searhing. The leaves of this tree appears at slightly di�erent depths, and to get the

most aurate result we should look at several di�erent parts of the tree when estimating

its average depth. We ounted the number of leaves in 8 random sub-trees with root node

at depth 46 in the whole tree, and timed how long it took to searh through this 2−46
-part

of the whole searh spae. Let the number of leaves and the times reorded be li and ti,

i = 1, . . . , 8. The depth of the whole tree an then be estimated as d ≈ 43 + log2(
∑

8

i=1
li),

and the time it takes to searh through the whole tree an be estimated as 243
∑

8

i=1
ti. The

data reorded are summarized in the following table

Time visiting 2−46
-part (seonds) # of leaves in sub-tree

210.2 81659
24.3 1159
29.6 50844
27.4 11386
210.2 81661
211.5 207045
26.1 4362
210.9 143648

From this we estimate the average depth of the tree to be 62.15, and that it will take

256
seonds to searh through the whole tree. The depth of the tree is signi�antly smaller

than 80, whih will be the depth of the �tree� when doing an exhaustive searh for the key,

so this looks like a valid attak on Bivium B. On the other hand it probably takes longer

time to visit a leaf in the searh tree of the Splitting algorithm, than it takes to try one key

in Bivium B, so we have estimated how long time it will take to searh through all 280
keys

in Bivium B.

It should be noted that trying one key in Bivium B is not without omplexity, sine we

have to lok the ipher 708 times before we an start omparing the key-stream produed

to see if the guess was right or wrong. Using our implementation of Bivium B we ould

searh through 224
keys in 210.7

seonds, whih means we an only searh through 269.3
keys

in the same time it takes the Splitting algorithm to break the ipher. One may argue that

there are faster implementations of Bivium B than we have used, but there is probably more

room for optimization in our implementation of the Splitting algorithm sine this software

is more omplex than the program guessing keys in Bivium B.

4.3 Trivium

We have not been able to break the full Trivium with our approah. The best result we have

been able to get is when we glue together any pair of symbols yielding a new symbol with

at most 1024 on�gurations. This gives a graph with only 477 symbols orresponding to

equations, down from 954 in the original graph. After applying the Splitting algorithm on

this graph we �nd that the depth of the searh tree is about 164, whih gives a omplexity

far higher than exhaustive searh.

Classially, stream iphers have often been designed with the initial state of the regis-

ters being the key. Ciphers employing this design have usually been broken. Newer stream

iphers, like Trivium, tend to have a user seleted key shorter than the size of the internal

state, and a key runup phase where the key-bits are mixed in a omplex way into the reg-

isters before any key-stream is produed. The key runup phase makes things more di�ult

for the ryptanalyst. For example, reating sparse equations through the key runup phase

will produe a lot of (more than 1500) new variables before any information is leaking out

in the form of key-stream bits. In our approah we therefore have to regard eah of the 288
bits in the state at the start of the key-stream generation as a variable, even though they

are derived from only 80 unknown bits. From this viewpoint, �nding 288 unknown bits with

omplexity O(2164) may not be so bad, it would make a strong attak if the key in Trivium

had been the internal state at the start of the key-stream generation.

5 Conlusions

In this paper we have proposed a tehnique for solving equation systems that di�ers a

lot from other known methods like Gröbner base omputations and re-linearization. Our

tehnique has been applied to equation systems representing Trivium and the two smaller

versions from [1℄, in this paper alled Bivium A and B.

The Agreeing method, helped by Splitting and Gluing performs rather well breaking

both versions of Bivium, but with a large di�erene in omplexity between the two. The

full Trivium still resists our attak due to the short key ompared to the size of the internal

state.

Referenes

1. C. De Cannière and B. Preneel. TRIVIUM A Stream Cipher Constrution Inspired by Blok Cipher

Design Priniples, http://www.erypt.eu.org/stream/papersdir/2006/021.pdf, 2005.

2. C. De Cannière and B. Preneel. TRIVIUM Spei�ations,

http://www.erypt.eu.org/stream/iphers/trivium/trivium.pdf, 2005.

3. S. Khazaei and M. Hassanzadeh. Linear Sequential Ciruit Approximation of the TRIVIUM Stream

Cipher, http://www.erypt.eu.org/stream/papersdir/063.pdf, September 2005.

4. H. Raddum and I. Semaev. New Tehnique for Solving Sparse Equation Systems, Internal ECRYPT

webpage, https://www.osi.esat.kuleuven.be/erypt/intern/STVL/, January 2006.

