
Cryptanalyti
 Results on Trivium

Håvard Raddum

Department of Informati
s, University of Bergen, N-5020 Bergen, Norway

Abstra
t. Trivium is a stream
ipher submitted to the eSTREAM proje
t in ECRYPT. It

has a simple and elegant design and is very fast, and so far no weaknesses have been reported.

In this paper we use a novel te
hnique to try to solve a system of equations asso
iated with

Trivium. Due to the short key-length
ompared to the size of the internal state of Trivium

(80 to 288 bits), we do not get an e�
ient atta
k on the full Trivium, but redu
ed versions

orresponding to the design's 'basi

onstru
tion', is broken by this approa
h.

1 Introdu
tion

The eSTREAM proje
t within ECRYPT issued a
all for se
ure and fast stream
iphers

in November 2004. The response from the
ryptographi

ommunity has been good, with

34 proposals submitted. Some of these have been broken, and others again have exhibited

weaknesses. Sin
e eSTREAM allows �tweaks� (minor modi�
ations to algorithm), several of

the atta
ks have been made invalid after
hanging some of the spe
i�
ation
omponents.

Trivium [1, 2℄ has remained un
hanged sin
e it was submitted, and at the time of writing

there is only one paper [3℄ on the eSTREAM website that has any
ryptanalysis of Trivium.

The
on
lusion of this paper is that Trivium is se
ure against a linear sequential
ir
uit

approximation atta
k.

In this paper we set up systems of sparse equations des
ribing the full Trivium and

redu
ed versions, and try to solve them by using a new te
hnique des
ribed in [4℄, but as

yet unpublished in a proper journal or pro
eedings. By this approa
h we
an show that

the full Trivium is still not broken, but that redu
ed versions with two registers instead

of three is broken signi�
antly faster than exhaustive sear
h. One point we would like to

emphasize is that sin
e our approa
h is algebrai
 in nature (solving equation systems) the

atta
k requires very little known key-stream, as opposed to most other types of atta
ks that

typi
ally requires enormous amounts of known key-stream. This makes our kind of atta
k

mu
h more threatening in a real-world setting.

The paper is organized as follows. As our te
hnique is unfamiliar to most, in Se
tion 2

we will thoroughly des
ribe the method of solving equation systems we use, with an example

to help the reader appre
iate the ideas behind this approa
h. In Se
tion 3 we spe
ify how

the redu
ed versions of Trivium were made, and show how to build an asso
iated sparse

equation system from these. In Se
tion 4 we present the results on the
omplexity of solving

these systems, and
on
lusions are drawn in Se
tion 5.

2 Constru
ting a graph from a sparse system of equations

In this se
tion we will show how to build a graph from a system of equations. Throughout

the whole paper we will only
onsider equations where the variables have values in GF (2).
We will des
ribe the graph
onstru
tion in the general
ase, where we assume we are given

a system of m equations E1, . . . , Em in n variables x0, . . . , xn−1. To help the reader get

familiar with the methods we will use the following spe
i�
 example system along the way:

E1 : x2x0 + x1x0 + x2 + x0 = 0
E2 : x3x1x0 + x3x1 + x3x0 + x3 + x1 + x0 + 1 = 0
E3 : x4x0 = 0
E4 : x4x3x1 + x3x1 + x1 = 0
E5 : x4x2 + x4 + x2 + 1 = 0

2.1 Constru
ting the graph

Ea
h equation in our system will
orrespond to one vertex in the graph. This vertex will be

labeled by the indi
es of the variables that make up the
orresponding equation, where the

indi
es are listed in de
reasing order. In our example system, the vertex
orresponding to

E1 will have the label (210). Ea
h vertex in the graph will have a set of variables asso
iated

with it.

De�nition 1. A vertex in the graph is
alled a symbol, and the variables asso
iated with

symbol S is denoted by X(S).

We initialize the graph
onstru
tion by
reating one symbol for ea
h equation. The rest

of the graph is
reated a

ording to the following pro
edure:

For ea
h pair of initial symbols S and T , let u = X(S) ∩ X(T). If there already

exists a symbol Q with u = X(Q), we draw edges from Q to S and T , if these edges

do not already exist. If there is no symbol with label u, a symbol Q is
reated with

u = X(Q), and edges are drawn from Q to S and T .

There will be no edges between initial symbols, or between symbols
reated by inter-

se
ting variable sets of initial symbols, so the graph will be bipartite. Following this simple

re
ipe, the graph asso
iated with the example system will look like this:

431 40210 310 42

2 10 1 3140

2.2 Transferring the information in the equation system to the graph

We have shown how to make the verti
es and the edges in the graph asso
iated with a

system of equations. To make the
orresponden
e between the system of equations and the

graph
omplete, we need to
arry the information the system has about possible solutions

into the graph. To do this we use the following de�nition.

De�nition 2. A
on�guration for an equation E is an assignment of values to the vari-

ables in E.

An equation E
orresponds to a symbol S, and a
on�guration for E (equivalently, for

S)
an be represented as a bit-string of length |X(S)|. A bit in a spe
i�
 position in the

string
ontains the value for the variable lo
ated in the same position in X(S).

We give every symbol
orresponding to an equation a list of all
on�gurations satisfying

the asso
iated equation, and denote the list of
on�gurations for symbol S by L(S). This will

arry all information every equation has about the solution, into the graph. Ea
h symbol

not asso
iated dire
tly with an equation will also have a list of
on�gurations. The list of

on�gurations for one of these symbols, S, will initially
onsist of all bit-strings of length

|X(S)|.

Note that produ
ing the list of
on�gurations for an equation
ontaining r variables has

omplexity 2r
. We need (in general) to run through all 2r

strings of length r to �nd out

whi
h
on�gurations that satisfy the equation, and whi
h that do not. Also, the expe
ted

size of the
on�guration list of a boolean equation is 2r−1
.

This means we require our system of equation to be sparse, in the sense that no single

equation
onsists of too many variables. Systems
oming from
iphers tend to have this

property, depending on how many extra variables that are introdu
ed when
reating the

equations. As we shall see, the system we
reate from Trivium has 954 variables all together,

but no single equation
ontains more than 6 of them, and no symbol S has more than 32

on�gurations in its L(S).

Let us now
ompute the
on�guration lists of the equations of our example system,

and add them into the graph. The reader may verify that the
on�guration lists of the �ve

equations are the ones shown below. The symbols not
orresponding to equations have full

on�guration lists.

0 0 0
0 1 0
0 1 1
1 1 1

210
0 0
0 1
1 0

40
0 0 0
0 1 0
0 1 1
1 0 0
1 1 0

431
0 0 1
0 1 0
1 0 0
1 0 1
1 1 0

310

0 1

1 1
1 0

42

0
1

20 0
0 1
1 0
1 1

10
0 0
0 1
1 0
1 1

31

0
1

1
0
1

0
0
1

4

2.3 Solving the system by message-passing

We now pro
eed to des
ribe the
ore algorithm for solving the system of equations. Every

solution of the system
an be represented as an n-bit string,
ontaining the values for

(xn−1xn−2 . . . x0) that solves the system. Ea
h equation in the system has to be satis�ed

with a solution, so for any symbol S asso
iated with an equation,
on
atenating bits from

a solution into a string for X(S) will produ
e a
on�guration found in L(S).
Our idea is to delete
on�gurations that
an not be part of a solution from the various

L(S). The goal is to remove all
on�gurations from the lists, ex
ept for those that are part

of a
orre
t solution. If we are able to do this we
an simply read the values of the remaining

on�gurations in the symbols to get a solution of the system.

Symbols that are
onne
ted by edges
an send messages about their
on�guration lists to

ea
h other. A symbol re
eiving a message may use that information to identify
on�gurations

that
an not possibly be part of a solution. How this
an be done is detailed below, using

the following de�nition.

De�nition 3. Let S and T be two symbols su
h that X(S) ⊂ X(T). A
on�guration for

X(T) is said to
over a
on�guration for X(S) if the two are equal for all variables in

X(S).

2.4 Sending messages downwards

Let the symbols S and T be
onne
ted with an edge, where T
orresponds to an equation,

so X(S) ⊂ X(T). A message from T to S is a list of
on�gurations for X(S),
ontaining
exa
tly those
on�gurations that are
overed by at least one
on�guration from the list in

T . These are the only possible values for the symbol S if T is to be satis�ed.

When S re
eives the message, all
on�gurations in L(S) not found in the message will

be deleted. These
on�gurations
an not be part of a solution sin
e it is impossible to satisfy

T with these values.

Example: The symbol (310) sends a message to (10):

0 0
0 1
1 0

10 0 0 1
0 1 0
1 0 0
1 0 1
1 1 0

310

10
0 0
0 1
1 0
1 1

0 0 1
0 1 0
1 0 0
1 0 1
1 1 0

310

10
0 0
0 1
1 0
1 1

(310) sends message
about the value of (10)

(10) deletes one
configuration

2.5 Sending messages upwards

Let us still
onsider two symbols S, T , where X(S) ⊂ X(T). The message S sends to T is

simply L(S).
When T re
eives the message, any
on�guration in L(T) that does not
over any
on-

�guration in the message will be deleted. None of the
on�gurations deleted
an be part of

a solution, sin
e it is impossible to satisfy S with them.

Continuing the example above, we let (10) send a message to (210):

0 0
0 1
1 0

10

Message about (10)
is sent to (210)

210
0 0 0
0 1 0
0 1 1
1 1 1

0 0
0 1
1 0

10

210
0 0 0
0 1 0
0 1 1
1 1 1

0 0
0 1
1 0

10
Two configurations
are deleted in (210)

2.6 Making the graph agree

As
an be seen from the examples above, the symbol (310), representing equation E2, has

ommuni
ated knowledge about the solution to (210) (equation E1) through the symbol

(10). This new information sets (210) in a position where it
an send a message to (2), sin
e
x2 = 0 is the only possibility if (210) is to be satis�ed with its
urrent
on�guration list. This

shows that sending some messages
an open up for others to be sent. In this way, we
an

get a
hain-rea
tion of messages, deleting all
on�gurations ex
ept for those
orresponding

to a solution.

The example system will be solved this way. We have got to the point where the symbol

(2) knows its only possible value is 0. This message
an be sent to (42),
ausing it to delete

all
on�gurations ex
ept for 10. This only leaves the possibility of the value 1 for the symbol

(4), et
, et
. In the end, every symbol will only be left with one
on�guration, sin
e the

system has a unique solution (x4, x3, x2, x1, x0) = (1, 1, 0, 0, 0).
We
all the pro
ess of sending useful messages, messages that a
tually
ause deletion

of
on�gurations, the Agreeing algorithm. When the graph is left in a state where no more

useful messages
an be sent we say that all the symbols in the graph agree.

Of
ourse, making the graph agree does not ne
essarily solve the asso
iated equation

system. If the amount of readily available information in the system is below some
riti
al

mass, the
hain-rea
tion of sending useful messages will die out before we
an see a solution,

or it may be that the initial state of the graph does not allow any useful messages to be

sent in the �rst pla
e. The next subse
tions deal with two strategies for over
oming this

problem.

2.7 Splitting

The �rst of the methods for re-starting the Agreeing algorithm we have
alled Splitting, and

is quite simple. When the graph rea
hes an agreeing state with no visible solution what we

do is the following: We fo
us on one symbol S, and split L(S) in two parts, L1 and L2.

We then repla
e L(S) with L1 or L2 and start the Agreeing algorithm again. The
orre
t

on�guration for S (assuming unique solution) is found on either L1 or L2, so what we are

basi
ally doing is guessing on whi
h part that
ontains this
on�guration. If it be
omes
lear

that the guess was wrong, we will run the Agreeing algorithm with the other list instead.

Guessing only on
e is generally not enough help for the Agreeing algorithm to solve

the system. In general, the symbols will again
ome to an agreeing state with no apparent

solution after the �rst guess. Then we need to guess again, run the Agreeing algorithm on
e

more, and so on. Ea
h time we guess, we are guessing one bit of information, sin
e the

orre
t
on�guration is found in either L1 or L2. One
an see that guessing on the value of

a spe
i�
 variable is a parti
ular
ase of splitting.

When will it be
ome
lear that a guess was wrong? When we make a wrong guess

somewhere, we are deleting the
orre
t
on�guration from a symbol's
on�guration list,

making it impossible to �nd a solution. What happens, possibly after making more guesses,

is that the Agreeing algorithm deletes all
on�gurations in some L(S). When this happens

we will ba
ktra
k to the last guess made, and try the other possibility. If this also turns out

to be a dead end, we will ba
ktra
k to the guess before that, and try the other possibility

from that point, et
.

What we are doing is going through a binary sear
h tree, looking for the solution of the

system. When we follow the bran
h of the tree
orresponding to the
orre
t guesses we �nd

a solution. The leaves of this tree will be the point where we either �nd a solution, or the

points where some L(S) be
omes empty. The leaves will be at somewhat varying depths,

and the
omplexity of this approa
h will be exponential in the average depth of the tree.

2.8 Gluing

The other main strategy for making the Agreeing algorithm start again we
all Gluing. With

this method we do not do any guessing, but instead merge two symbols into one.

Let symbols S and T be given, and let X(S) = A ∪B, X(T) = B ∪C with A ∩C = ∅.
We will make a new symbol Z, with X(Z) = X(S) ∪X(T) and and de�ne the list L(Z) as

follows. The list L(Z)
onsists of all
on�gurations (a, b, c), where b is a
on�guration for

B, (a, b) ∈ L(S), and (b, c) ∈ L(T). In other words, L(Z)
onsists of all
on�gurations that

over one
on�guration in L(S) and one
on�guration in L(T). The symbol Z = S ◦T is the

result of gluing the symbols S and T , and the
on�guration
orresponding to the solution

of the system is found on L(Z).
When our symbols rea
h an agreeing state, we
an glue together symbols to
reate new

symbols made from larger sets of variables, with more open information about the solution.

When gluing S and T together we dis
ard S and T , sin
e all information in them are

ontained in S ◦ T . After gluing together several pairs of symbols the new set of symbols

will in general not be in an agreeing state. We
an then
onstru
t a new graph from them,

and start the Agreeing algorithm again.

The pri
e to pay when gluing together symbols is longer
on�guration lists. Assum-

ing S and T agree, the number of
on�gurations in S ◦ T will be at least as big as

max{|L(S)|, |L(T)|}, and may be as big as |L(S)| · |L(T)|, depending on the size of

X(S) ∩X(T). In pra
ti
e we have to set a threshold and only glue together symbols that

produ
e
on�guration lists with size below this threshold. This means we may run into
ases

where we
an not a�ord any symbols to be glued.

3 Trivium and its redu
ed variants

Trivium has a simple and elegant design, making it a tempting
andidate for
ryptanalysis,

but so far no weaknesses have been reported. It is also very fast, making it a strong
andidate

in eSTREAM as long as it is not broken.

Trivium operates on three registers of length 93, 84 and 111 bits. These registers may

also be regarded as
on
atenated into one register (s1, . . . , s288) of 288 bits. The following

pseudo-
ode
opied from [2℄, is a
ompa
t but
omplete spe
i�
ation of how to generate one

bit z of the key-stream:

t1← s66 + s93

t2← s162 + s177

t3← s243 + s288

z← t1 + t2 + t3

t1← t1 + s91 · s92 + s171

t2← t2 + s175 · s176 + s264

t3← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

This pro
ess is repeated until enough key-stream bits have been produ
ed.

Trivium takes an 80-bit key (K1, . . . ,K80) and an 80-bit IV (IV1, . . . , IV80) for initial-
izing the registers. This is done as follows:

(s1, s2, . . . , s93)← (K1, . . . ,K80, 0, . . . , 0)

(s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)

(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)

The registers are then
lo
ked 4 ·288 times without produ
ing any key-stream, and after

this key-stream generation is ready to start.

3.1 System of equations representing Trivium

We regard the state of the registers at the time when key-stream generation is about to start

as the initial state. We label these bits with the unknown variables s1, . . . , s288, so at this

point we have 288 unknowns and no equations. When
lo
king Trivium on
e, we introdu
e

three new bits to the next state, whi
h
an be expressed as non-linear
ombinations of some

of the bits from the initial state. In order to keep the future equations sparse enough, we

let these three bits be
ome new variables, and get the following equations from the �rst

lo
king:

s289 = s66 + s91 · s92 + s93 + s171

s290 = s162 + s175 · s176 + s177 + s264

s291 = s243 + s286 · s287 + s288 + s69

In addition to this we get one equation from the known key-stream bit z:

z = s66 + s93 + s162 + s177 + s243 + s288

This pro
edure is repeated, so for ea
h
lo
king of the
ipher we get four equations and

three new variables. After
lo
king the
ipher 288 times we have 1152 equations in 1152
variables, so the knowledge of 288
onse
utive key-stream bits should be enough to identify

the initial state uniquely.

We
an redu
e the size of this system a little. Note that towards the end of generating

the equations, the new variables we introdu
e will a
tually never be used in an equation

given from the key-stream. The new bits entered into the registers are not used for key-

stream generation before the
ipher has been
lo
ked 66 more times. This means that for

the last 66
lo
kings, we
an drop the three equations representing the new bits
oming into

the registers, and just make the equation from the key-stream bit without introdu
ing new

variables. This yields a system of 954 equations in 954 variables, where all equations
onsist

of 6 variables and have a list of 32 possible
on�gurations.

If we
an solve this system, we �nd the initial state of the
ipher at the time key-stream

generation started, but we do not re
over the key dire
tly. It is a straightforward task to

ompute the previous state from a given state, so knowing the state of the
ipher at some

point we
an
lo
k Trivium ba
kwards to rea
h the state where the key and IV were loaded.

Hen
e solving our system is equivalent to �nding the key.

3.2 Redu
ed variants

In [1, Fig. 4℄, the designers of Trivium des
ribe what they
all the 'basi

onstru
tion' of

the Trivium design. This is like the full Trivium, but with two registers instead of three.

This smaller
ipher
omes in two slightly di�erent versions. One where the key-stream bit

produ
ed is the sum of two bits from the internal state, and one where the key-stream bit

is the sum of four bits from the state. We will
all these variants for Bivium A and Bivium

B, respe
tively.

We have made a spe
i�
ation of these two
iphers, trying to keep them as
lose as

possible to the full Trivium. Both variants have two registers of length 93 and 84, and the

state of these is given as (s1, . . . , s177). The pseudo-
ode for
lo
king Bivium A on
e is then

given as

t1← s66 + s93

t2← s162 + s177

z← t2

t1← t1 + s91 · s92 + s171

t2← t2 + s175 · s176 + s69

(s1, s2, . . . , s93)← (t2, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

The spe
i�
ation of Bivium B is exa
tly the same, ex
ept that z ← t2 is repla
ed by

z ← t1 + t2.

For both variants, the key and IV loading is the same as in Trivium (the third register

in Trivium, initialized with
onstants, is removed), and the
iphers are
lo
ked 4 · 177 times

before any key-stream is produ
ed.

The equation systems representing Bivium A and B
an be made the same way as for

the full Trivium. Ea
h
lo
king introdu
es two new variables and three new equations. After

177
lo
kings we get a system of 531 equations in 531 unknowns, but like for Trivium we

an remove the last 2 · 66 equations representing new variables sin
e these variables are not

used in any key-stream equation. We then get systems of 399 equations in 399 unknowns.

The equations tying new variables to old ones are made up of 6 variables ea
h, but the key-

stream equations
ontain 4 variables ea
h for Bivium B, and only 2 variables for Bivium A.

This di�eren
e will turn out to be
ru
ial for the
omplexities of solving these systems with

the methods proposed in Se
tion 2.

4 Solving the Equation Systems

Here we will report on the
omplexities of solving the equation systems representing Bivium

A and B and Trivium by using the te
hniques des
ribed in Se
tion 2.

4.1 Bivium A

Bivium A is the simplest of the three
iphers
onsidered, and should have the equation

system that is easiest to solve. Indeed, this is also the
ase. The depth of the sear
h tree

when running the Splitting algorithm is roughly 29. The depth of the tree
an be smaller

by gluing some of the symbols together before starting the Splitting algorithm. If we glue

together as many pairs of symbols we
an, allowing new symbols to have
on�guration lists

of size up to 1024, we get a graph where only 150 symbols
orrespond to equations. The

depth of the sear
h tree is then about 21, and our program returned the
orre
t initial state

in about one day. Bivium A is very weak.

4.2 Bivium B

The only di�eren
e between Bivium A and B is that key-stream equations from Bivium B

have four variables instead of two. This is enough to make the
omplexity of solving Bivium

B's asso
iated system of equations mu
h higher than for Bivium A.

The best approa
h we found for solving this system is to glue together pairs of symbols

yielding new symbols with
on�guration lists of size 32, and then apply the Splitting method.

The
omplexity of the Splitting method is O(2d), where d is the depth of the tree we

are sear
hing. The leaves of this tree appears at slightly di�erent depths, and to get the

most a

urate result we should look at several di�erent parts of the tree when estimating

its average depth. We
ounted the number of leaves in 8 random sub-trees with root node

at depth 46 in the whole tree, and timed how long it took to sear
h through this 2−46
-part

of the whole sear
h spa
e. Let the number of leaves and the times re
orded be li and ti,

i = 1, . . . , 8. The depth of the whole tree
an then be estimated as d ≈ 43 + log2(
∑

8

i=1
li),

and the time it takes to sear
h through the whole tree
an be estimated as 243
∑

8

i=1
ti. The

data re
orded are summarized in the following table

Time visiting 2−46
-part (se
onds) # of leaves in sub-tree

210.2 81659
24.3 1159
29.6 50844
27.4 11386
210.2 81661
211.5 207045
26.1 4362
210.9 143648

From this we estimate the average depth of the tree to be 62.15, and that it will take

256
se
onds to sear
h through the whole tree. The depth of the tree is signi�
antly smaller

than 80, whi
h will be the depth of the �tree� when doing an exhaustive sear
h for the key,

so this looks like a valid atta
k on Bivium B. On the other hand it probably takes longer

time to visit a leaf in the sear
h tree of the Splitting algorithm, than it takes to try one key

in Bivium B, so we have estimated how long time it will take to sear
h through all 280
keys

in Bivium B.

It should be noted that trying one key in Bivium B is not without
omplexity, sin
e we

have to
lo
k the
ipher 708 times before we
an start
omparing the key-stream produ
ed

to see if the guess was right or wrong. Using our implementation of Bivium B we
ould

sear
h through 224
keys in 210.7

se
onds, whi
h means we
an only sear
h through 269.3
keys

in the same time it takes the Splitting algorithm to break the
ipher. One may argue that

there are faster implementations of Bivium B than we have used, but there is probably more

room for optimization in our implementation of the Splitting algorithm sin
e this software

is more
omplex than the program guessing keys in Bivium B.

4.3 Trivium

We have not been able to break the full Trivium with our approa
h. The best result we have

been able to get is when we glue together any pair of symbols yielding a new symbol with

at most 1024
on�gurations. This gives a graph with only 477 symbols
orresponding to

equations, down from 954 in the original graph. After applying the Splitting algorithm on

this graph we �nd that the depth of the sear
h tree is about 164, whi
h gives a
omplexity

far higher than exhaustive sear
h.

Classi
ally, stream
iphers have often been designed with the initial state of the regis-

ters being the key. Ciphers employing this design have usually been broken. Newer stream

iphers, like Trivium, tend to have a user sele
ted key shorter than the size of the internal

state, and a key runup phase where the key-bits are mixed in a
omplex way into the reg-

isters before any key-stream is produ
ed. The key runup phase makes things more di�
ult

for the
ryptanalyst. For example,
reating sparse equations through the key runup phase

will produ
e a lot of (more than 1500) new variables before any information is leaking out

in the form of key-stream bits. In our approa
h we therefore have to regard ea
h of the 288
bits in the state at the start of the key-stream generation as a variable, even though they

are derived from only 80 unknown bits. From this viewpoint, �nding 288 unknown bits with

omplexity O(2164) may not be so bad, it would make a strong atta
k if the key in Trivium

had been the internal state at the start of the key-stream generation.

5 Con
lusions

In this paper we have proposed a te
hnique for solving equation systems that di�ers a

lot from other known methods like Gröbner base
omputations and re-linearization. Our

te
hnique has been applied to equation systems representing Trivium and the two smaller

versions from [1℄, in this paper
alled Bivium A and B.

The Agreeing method, helped by Splitting and Gluing performs rather well breaking

both versions of Bivium, but with a large di�eren
e in
omplexity between the two. The

full Trivium still resists our atta
k due to the short key
ompared to the size of the internal

state.

Referen
es

1. C. De Cannière and B. Preneel. TRIVIUM A Stream Cipher Constru
tion Inspired by Blo
k Cipher

Design Prin
iples, http://www.e
rypt.eu.org/stream/papersdir/2006/021.pdf, 2005.

2. C. De Cannière and B. Preneel. TRIVIUM Spe
i�
ations,

http://www.e
rypt.eu.org/stream/
iphers/trivium/trivium.pdf, 2005.

3. S. Khazaei and M. Hassanzadeh. Linear Sequential Cir
uit Approximation of the TRIVIUM Stream

Cipher, http://www.e
rypt.eu.org/stream/papersdir/063.pdf, September 2005.

4. H. Raddum and I. Semaev. New Te
hnique for Solving Sparse Equation Systems, Internal ECRYPT

webpage, https://www.
osi
.esat.kuleuven.be/e
rypt/intern/STVL/, January 2006.

