Ulbung:

$$y^{2} \equiv x^{3} + x + A \mod A^{2}$$

 $f_{1}^{4} + A^{2} + A^{2}$

$$\frac{Anzehl der Punkle auf E}{y^2 = x^3 + ax + 6} \mod p$$

$$(x, y) \quad exclusion \\ y^2 = x^3 + x + 4 \mod p$$

$$\frac{y}{y^2} + \frac{y}{y^2} + \frac{$$

Sate von Hasse

$$E$$
 elliptische kurve mod p
 $\left(\sqrt{p} - 1\right)^{2} \leq |E| \leq (\sqrt{p} + 1)^{2}$
 $p - 2\sqrt{p} + 1$ $p + 2\sqrt{p} + 1$
 \Rightarrow Größenordnung von $|E|$ Gängt nur von p ab
 $2n$ vermeidende Attacten: Pohlig-Hellman, Pollard
Reducien auf Tokzens Kurlle
Printeiler von $|E|$ Laufert ONF)
Konsequenz:
 $\cdot |E|$ muss mindestens einen größen Prindeiler q
haben
 $\cdot \sqrt{q}^{2} \geq 2^{2}$.
Spezialfälle:
 $|E| = p \Rightarrow es grits einen polynomielilen Algorithums$
 $\cdot |E| = p - 1$ bzw. $q | p^{2} - 1$, $his 6 \Rightarrow$ subexp. Algorithums