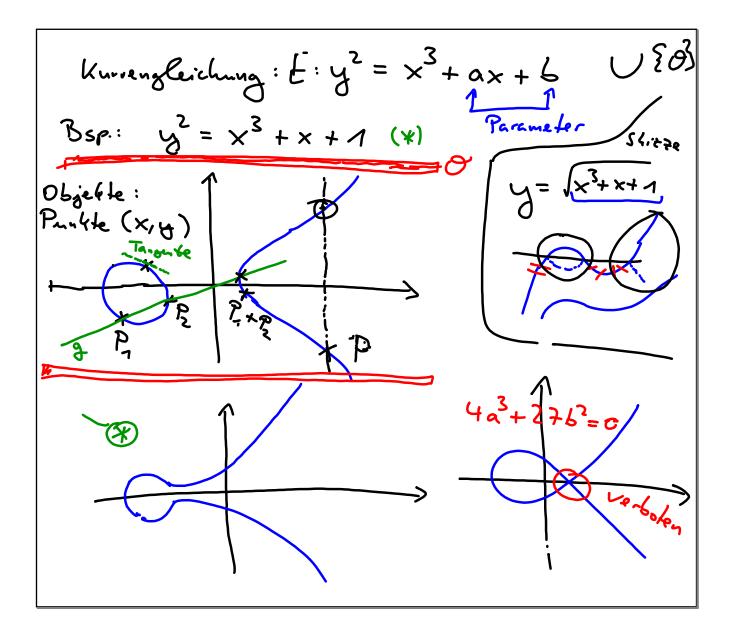


Elliphische Kurnen 1989/90 Anwendung in kryphyrephie Wenige Sperialfälle: polynomiell, subexponetiell ansonsten nur exponentio Cle Angriffe ~ 256 Bit



$$\begin{pmatrix} x_{A} \\ y_{A} \end{pmatrix} + \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = \begin{pmatrix} x_{A} + x_{2} \\ y_{3} + y_{2} \end{pmatrix}$$

Veltoraddition funktionnert micht
(liegt außerhalt derkunne)
Richtige Methode: Gerade durch P_{1}, P_{2}
Schwittpungt mich E
Spriegelung an x-Michne
($P_{1} + P_{2}) + P_{3} = P_{4} + (P_{2} + P_{3})$
 $P + O = P$
 $P + O = P$

Γ

Pun(taddition:

$$P_{A} = (x_{A}, y_{A}), \quad P_{2} = (x_{2}, y_{2})$$
Steigung in der Geraden $g(x) = mx + d$
durch P_{A} and P_{2} , $(P_{A} \neq P_{2}, P_{A} \neq -P_{2})$
 $m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}, \quad x_{A} \neq x_{2}$

und falls $P_{A} = P_{2}$, Steigung der Tangenke
 $y^{2} = x^{3} + ax + b$ || Ablaitung
 $2 \cdot y(x) \cdot y^{1}(x) = 3x^{2} + a$
 $y'(x) = \frac{3x^{2} + a}{2y(x)}$
 $m = \frac{3x^{2} + a}{2y}$ ist die gemelste Steigung
 $g(x) = mx + d$ wind vom $P_{an}(t (x, y) \operatorname{erfin}^{t} l l t)$
 $=) mx + d = y =) d = y - mx$

Falls

$$(x_{A}, y_{A}) = (x_{2}, -y_{2})$$
dann wire die Gerede sentecht

$$\Rightarrow P_{A} + P_{2} = 0 \quad b_{ev} \quad P_{A} = -P_{2}$$
Falls $P_{A} \neq \overline{P_{2}} \land P_{2} \neq -P_{2} \quad mus \ observent Schniftpunkt
mit E berechnet werden:
$$g(x) = m \times + d , \quad y^{2} = x^{3} + ax + b$$

$$y = m \times + d \quad (m \times + d)^{2} = x^{3} + ax + b$$

$$x^{3} = m^{2} x^{2} + (a - 2md) \times + b - d^{2} = 0$$

$$(x - x_{A}) \cdot (x - x_{2}) \cdot (x - x_{3}) = 0$$

$$x^{3} + (-x_{A} - x_{2} - x_{3}) x^{2} + (x_{A} x_{2} + x_{A} x_{3} + x_{2} x_{3}) x - x_{A} x_{2} x_{3} = 0$$

$$\Rightarrow + x_{A} + x_{2} + x_{3} = + m^{2}$$

$$\Rightarrow x_{3} = m^{2} - x_{A} - x_{2} , \quad y^{3} = -(m \times 3 + d)$$$

Kryphographie:
diece Rechannegeln gelten
auch mod p, p Primzell
Additionsalgorithmus:
Innt:
$$P_1 = (x_1, y_1), P_2 = (x_2, y_2)$$
 bew
Output: $P_3 = (x_3, y_3)$ oder
if $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$ bew
if $P_2 = 0$ then return P_2
fi
if $P_2 = 0$ then return P_1
fi
if $P_1 = -P_2$ $\left[(x_1, y_1) = (x_{21} - y_2) \right]$
Alson return
fi
if $P_4 = P_2$ // Tangentie
then $m \equiv (3x_1^2 + a)/2y_1$ mod p
fi
 $x_3 \equiv no^2 - x_1 - x_2$ mod p
ieturn (x_3, y_3)
 $= m(x_1 - x_3) - y_1$ mod p

Ubung:

$$y^2 \equiv x^3 + x + \Lambda \mod 7$$

Leste auf gültige elliptische kurve [$ya^3 + 276^2$]
 $P_1 = (O, \Lambda)$ | Berechne $P_1 + P_1$
 $P_2 = (2, 2)$ | $P_1 + P_2$
 $P_1 + (-P_1)$