Signieren einer Nechnicht m
R Zufallszall 25 k 5 p-2 A got (k,p-1)¹
r = g mod p
S =
$$\frac{1}{R}$$
 (m-a.r) mod p-1
 $1 g_{0}T(k,p-1) = 1$
Signatur für m ist (r,s)
Verifizieren einer Signatur (r,s) für m
(*) Bereche y · r s und prüfe cb = g mod p
y · r ^S = $(g^{0})^{r} \cdot (g^{0})^{\frac{1}{2} \cdot (m-ar)} = g^{m} mod p$
Falls (*) erfüllt, alezeptiere Signatur,
sonst lehne ab.

Bespeiel:

$$p = 23$$
, $g = 5$, $a = 3$, $m = 6$
 $g = 5^{3} = 10 \mod 23$
 $\ddot{o}ffintlich(p, g, y) = (23, 5, 10)$
Signieen von $m = 6$
 $-k = 5$, $g_{3}T(-k, 22) = 1$
 $(r, s) = (20, 20^{\circ})$
 $g' \cdot r^{s} = 8 = g^{m} \mod 23$

ElGamel
$$\rightarrow$$
 DSA (p, g, α, ψ, q)
 $q \mid p - 1$
DSA Bitlänge von q ist $\geqslant 256$
nachlesen \Rightarrow eineig belannter Augniff
ist Pollard in $O(\sqrt{q})$
Schritten $\sim \sqrt{2^{36}} = 2^{128}$