Pollard-y-Anclyse
Wann ist 2ine kollision zu erwarten, wenn es n mögliche Werte fuir y gist?
Erwartung gerechtfertigt, wenn Wahrscheinhicikeit dafiir $>50 \%$, d.h. $>\frac{1}{2}$
Wir berehnen die Wahrscheinhichbeet, dass eine kollion nach k Versmechea noch nicht erreichl ist.

Uruenmodell:
n kingeln,
Ziahen mit Zuriicklegen

$$
k . z_{\operatorname{lng}} \frac{n-(k-1)}{n}
$$

$$
P(k)=\underbrace{\frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \cdots \frac{n-(k-1)}{n}}_{k-1} \leqslant \frac{1}{2}
$$

$$
\prod_{j=1}^{k-1} \frac{n-j}{n}=\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)
$$

Idee: $1+x_{j}<e^{x}=1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots$

$$
\square<\prod_{j=1}^{k-1} e^{-\frac{j}{\hbar}}=e^{\sum_{j=1}^{k-1}-\frac{j}{n}}
$$

$$
\begin{aligned}
& =e^{-\frac{1}{n} \frac{k-1}{j-1} \cdot j}=e^{-\frac{1}{n} \cdot(k-1) \cdot k / 2} \frac{1}{\leqslant} \frac{1}{2} \\
& +\frac{1}{2 n} \cdot(k-1) \cdot k \leqslant-\ln \left(\frac{1}{2}\right)=+\ln 2 \\
& k^{2} \geqslant(k-1) \cdot k \geqslant 2 n \cdot \ln (2) \\
& k \geqslant \sqrt{2 \ln 2 \cdot n} \quad e^{x_{1}+x_{2}} \\
& k \sim O(\sqrt{n})
\end{aligned}
$$

Kollisionserkennuing (ohne Hanptspeiharbadarf)
$y_{2 i}$ schnelle Fofge $\left(k_{2:}, l_{2:}\right)$
y_{i} langsame Foge ($k: 1: i$)
Im kreis wird di
schnelle Folge die

langsame Foge einholen, de Abrtand verniogert sich jedormal un 1 .

Parallelisiernng
1996 v. Oorschot / Wiene:-
Pullard- λ "distingnished points"

Server sammelt

