EG(D-Ubung
extended greatest common divisor

$$a = 43$$
 $b = 3 \land$ $g(d(a, 6) = \land$
 $a \cdot x + b \cdot y = 1 \mod 43$
 $43 \cdot 13 - 31 \cdot 18 = 1 \longrightarrow -31 \cdot 18 = 1 \mod 43$
 $x = 13$, $y = -18$ $\Rightarrow \frac{1}{31} = -18 \mod 43$

Bemerkungen: · efficient, weil EG(D Lanfreit $O(lo_{\lambda}(b)^{3})$ · EGCD kann vermieden werden - mod p, p e IP $a = 1 \mod p \Rightarrow \frac{1}{a} \equiv a \mod p$ - mod m, m lein > Auspreisienen

Einbethung 10: Pohliz - Hellmann in DL-Berechnung g^x = h mod p J J Reduzeren auf I X. mod q. X: durch Ausprobieren in qui Schnitten order mit Methode CRT × mod p - 1 Shanks bew. Pollard in Vqi Scinitien

Shanks Methode: Baby-Step-Friant-Step
Situation:
Gleichung
$$g'=h$$
 nach der Reduktion
mit $x \in EO, 1, 2, ..., q-1$
Idee:
 $g' = g' = h$ $m=1q$
 $ii Harle OE xo Em-1, 0 E Xn Em-1$

$$g_{x_{n}}^{x_{n} \cdot m + x_{e}} = h$$

$$\left(g_{n}^{m}\right)^{x_{n}} \cdot g_{n}^{x_{e}} = h$$

$$\left(g_{n}^{m}\right)^{x_{n}} = h \cdot g_{n}^{-x_{e}}$$

$$P_{aare}(x_{e}, h \cdot g_{n})$$
in Hashtabelle

Beispiel:
$$p = 47$$
, $G_{7} = 5$, $H = 23$
 $47 - 4 = 223$
 $5^{\times} = 23 \mod 47$
 U U $Q = 23$, Polly - Hellman
 $\left(5^{\frac{43-4}{23}}\right)^{\times} = 23^{\frac{43-4}{23}} \mod 47$
 $25^{\times} = 12 \mod 47$
Shaw(s: $g^{\times} = 4$

Hashtabelle aufbauen:

$$h \cdot g^{-x_0}$$
 für $0 \le x_0 \le m = \lceil \sqrt{q} \rceil$
 $q = 23$
 $12 \cdot 25^{-x_0} \mod 47$, $0 \le x_0 \le 5$
 $\frac{x_0}{12} + \frac{12}{3} (3)^n \mod p$
 $2 \mid 21$
 $3 \mid 14$
 $\frac{y}{25} = 1 \mod 47$
 $5 \mid 1 \le \frac{x_1 \cdot m + x_0}{5} = 0.5 + 5 = 5$
 $= 25 = 12 \mod 47$

("Ibung: Shants anwenden fit:

$$G = 5, H = 33, P = 47$$

$$Polly-Hellman q$$

$$F = 25 = 8 mord 47$$

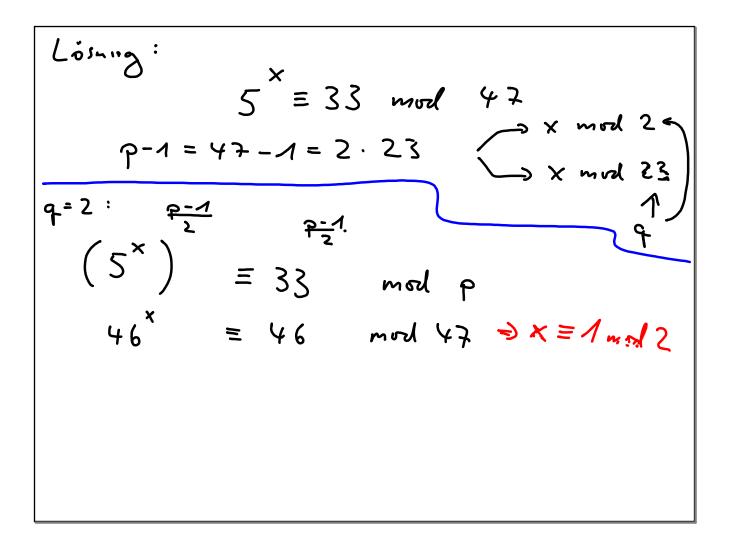
$$F = 125 = 8 mord 47$$

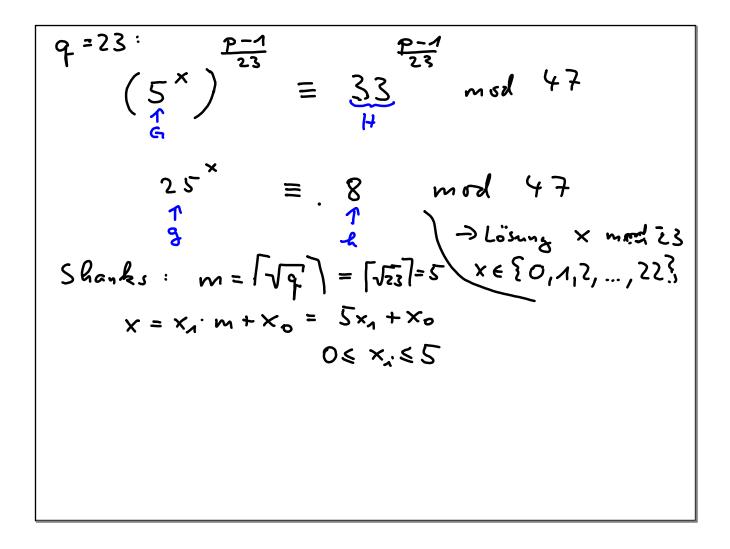
$$Hachtabelle f mit x_0 0 \le x_0 \le 5$$

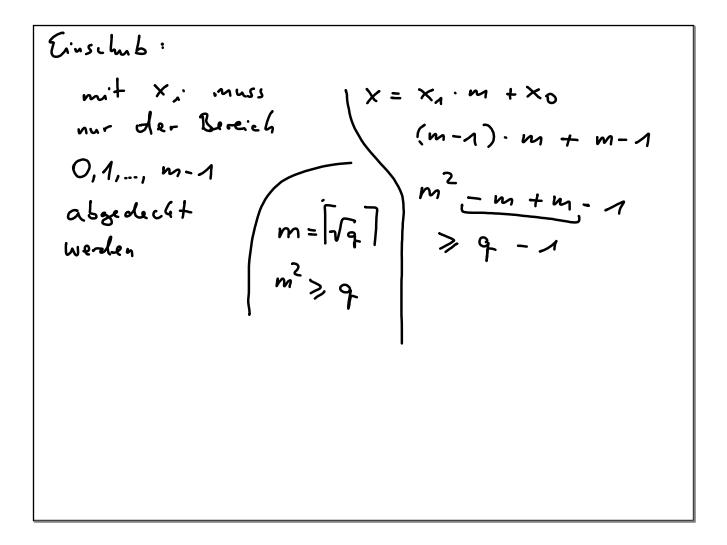
$$m = \sqrt{7}$$

$$Husporobieren f mit x_1 x_n > 0$$

$$\rightarrow x = x_1 \cdot m + x_0$$







$$25^{\times} \equiv 8 \mod 47$$

$$25^{\times_{n} \cdot m + \times_{0}} \equiv 8 \mod 47$$

$$(25^{\times})^{\times_{n}} \equiv 8 \cdot 25^{-\times_{0}} \mod 47$$

$$m = 5, \quad 0 \leq \times_{0} \leq 5 \quad (\text{Einschild: } \times_{0} \leq 4 \text{ reiclf})$$
in the shadeledes spectrum

Г

May 29, 2018

$$(2.5)^{\times n} \mod 47$$

$$12^{\times n} \mod 47$$

$$x_{n} = 0 : 12^{\circ} \equiv 1 \mod 47$$

$$5 \operatorname{Treffer} : x = x_{n} \cdot m + x_{0}$$

$$x = 0 \cdot 5 + 4$$

$$x \equiv 4 \mod 23$$

$$25^{4} \equiv 8 \mod 47$$

$$Teillösungen:
x = 1 mod 2
x = 4 mod 23
CRT: $a_1 = 1 m_1 = 2, a_2 = 4, m_2 = 23$
 $x = a_1 \cdot m_2 \cdot m_2' + a_2 \cdot m_1 \cdot m_1'$
 $m_2' = \frac{1}{m_2} mod m_1 | m_1' = \frac{1}{m_1} mod m_2$
 $= \frac{1}{23} mod 2$
 $= 1 mod 2$
 $= 12 mod 23$
 $= 12 mod 23$$$