Erzang-finden

$$
\begin{aligned}
& \text { (1) } p=11, p-1=2.5 \\
& g=2: \quad 2^{\frac{11-1}{2}} \equiv 2^{5} \equiv 32 \equiv 10^{1} \bmod 11 \\
& 2^{\frac{11-1}{5}} \equiv 2^{2} \equiv 4^{\text {mu: }} 111 \\
& \begin{array}{l}
g=3: \\
\text { hein } \varepsilon_{\text {senger }} 3^{\frac{11-1}{2}} \equiv 3^{5} \equiv 3^{3} \cdot 3^{2} \equiv 5 \cdot 9 \equiv 65 \equiv(1 \text { modn }
\end{array}
\end{aligned}
$$

(2)
2) $p=101, p-1=2^{2} \cdot 5^{2}$
$g=2: \quad g^{\frac{101-1}{2}} \equiv g^{50} \equiv 100 \bmod 101$

$$
\begin{aligned}
& g^{\frac{101-1}{5}} \equiv g^{20} \equiv 95 \bmod 101 . \\
& 7 \cdot p-1=)^{2} \cdot 3.83
\end{aligned}
$$

(3) $p=997, p-1=2^{2} \cdot 3 \cdot 83$

$$
\leadsto g=7
$$

(4)

$$
\begin{aligned}
& p=6552 i \quad p-1=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \\
& \leadsto g=29
\end{aligned}
$$

Anzahl Erenger

$$
\begin{aligned}
\varphi(p-1) & =\varphi\left(2^{4}\right) \cdot \varphi\left(3^{2}\right) \cdot \varphi(5) \cdot \varphi(7) \cdot \varphi(13) \\
& =\left(2^{4}-2^{3}\right) \cdot\left(3^{2} \cdot 3\right) \cdot 4 \cdot 6 \cdot 12 \\
& =8 \cdot 6 \cdot 26 \cdot 12=96 \cdot 144=13824
\end{aligned}
$$

Primzahlen finden
Sieb des Erathostenes firr "kleine" Primzahlen

grope Primzahlen

- Probedivision mait fleinen Prinizahlien
- Primzalltert (\rightarrow Miller-Rabin)
$\xrightarrow{\text { Sie } 6}$

+14														
	x	x	\times		x		x	x	x		x		x	x

no Mikimum fir gesuchte Primzalhl

Das Sieb testet Zahilen der Form

$$
n_{0}+i
$$

ouf kleine Teiler t (s.o. Erathostenes)
Wo gilt $t \mid\left(n_{0}+i\right)^{?}$

$$
\begin{aligned}
& n_{0}+i \equiv 0 \bmod t \\
\Leftrightarrow \quad i & \equiv-n_{0} \operatorname{kn} \pi d t
\end{aligned}
$$

Beispiel:
wir suchen die erste Primzath? > 10.000 $n_{0}=10.000$

+0	+1	+2	+3		+7				
x		x	x	x	x	\times		x	

$$
\begin{aligned}
& t=2 \Rightarrow \quad i \equiv-n_{0} \equiv-10000 \equiv 0 \bmod 2 \quad x \\
& t=3 \Rightarrow i \equiv-n_{0} \equiv-10000 \equiv 2 \bmod 3 x
\end{aligned}
$$

Primzahletests
rinten als Gmudidee

$$
\underset{a \in \mathbb{N}, g g T(a, p)=1}{p \text { Primzahe }} \Rightarrow a^{p-1} \equiv 1 \bmod p
$$

kleiner Sak des Fermat

Beispiele:
(1)

$$
\begin{aligned}
& \quad \begin{aligned}
p=11, a=2 \Rightarrow a^{11-1} & \equiv 2^{12} \equiv 2^{5} \cdot 2^{5} \\
& \equiv 10 \cdot 10 \equiv 1 \bmod 11
\end{aligned}
\end{aligned}
$$

(2)

$$
\begin{gathered}
n=143, a=2 \\
a^{143-1} \equiv 2^{142} \equiv 114 \bmod 143 \\
" \bar{B} \Rightarrow \bar{A} 11
\end{gathered}
$$

Pragmatischer Ansatz der Kuyptrgraphie: $a^{p-1} \equiv 1 \bmod p$ für viele $a^{\prime} s$ Verschärfung vón $=$ Miller-Rabin-Primzalltest

- wenn immer $\equiv 1$, dann verhïnde " p Primzall"

Schnelle Exponeritiation
$a^{x} \bmod p$ effirient berechnen

$$
\begin{gathered}
a^{16} \equiv\left(\left(\left(a^{2}\right)^{2}\right)^{2}\right)^{2} \quad \bmod p \\
a^{21} \equiv\left(\left(\left(a^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(a^{2}\right)^{2} \cdot a \\
21=16+4+1
\end{gathered}
$$

Lanfzeit:
$a^{x} \bmod p$
Anzahl Quadriamngen: Bittainge von x
" Multiplikationen: $\underbrace{\square \cdot\left[\log _{2}(x)\right]}$
$\underset{*}{\bmod :} \theta\left(\log ^{2}(p)\right)$

