Diffie - Hell:man B g öffentlich k=g geheimen (g) Mod p (g) Lhlistel

Beispiel:

Alice
$$a = 37$$
 Bob $b = 373$

Primall $p = 2^{16} + 1 = 65537$

Erzenger $g = 2053$ $33^{10} + 10^{11}$
 $g^{0} \mod p = 39981 \rightarrow 806$ 55440

 $g^{0} \mod p = 13933 \rightarrow 3200$
 $33^{11} \mod p$

Sicherhet des DH - Protokolls

- · Länge von p, Bitlänge > 2048 Bit
- . p sichere Primeabl
- · Ordnung van g

$$g^2 = 1$$
 mod p
 $g^2 = -1$ mod p

g hat Ordning

Ordningen berechnen mod p

für jedes Element g nod p

finde kleinsten Exponenten i EN

für den gi = 1 mod p

gilt.

Beispiel: p = 13

Ordning von g mod 13					
max Ordung	9723456	ord (g) 12 36 4 12		9078910112	ord (g) 12 4 3 6 12 2

Wenn g max. Ordning gibt es?

Wenn g max. Ordning hat,

dann hat auch g³ mod p

max. Ordning, falls

ggT (j,p-1)=1

Das sind $\varphi(p-1)$ Stick.

$$\varphi(12) = \varphi(2^2) \cdot \varphi(3)$$

$$= (2^{2}-2^{4}) \cdot (3-1) = 4$$

=) 4 Elemente mod 13 mit (max. Ordning) ERZEUGER Sate:

für eine Primable p

und ein Element g mod p

mit ggT (g,p)=1

gilt ord (g) | p-1.

Erzenge-kniterium

Für $p \in IP$ und $g \in N$ mit $gg^{T}(g_{I}p)=1$ Zerlege p-1 in Primfaktoren

und prife

Ubung: (mit PARI/gr)

drei Erzenger finden für p = 111, p = 101, p = 397and p = 65521