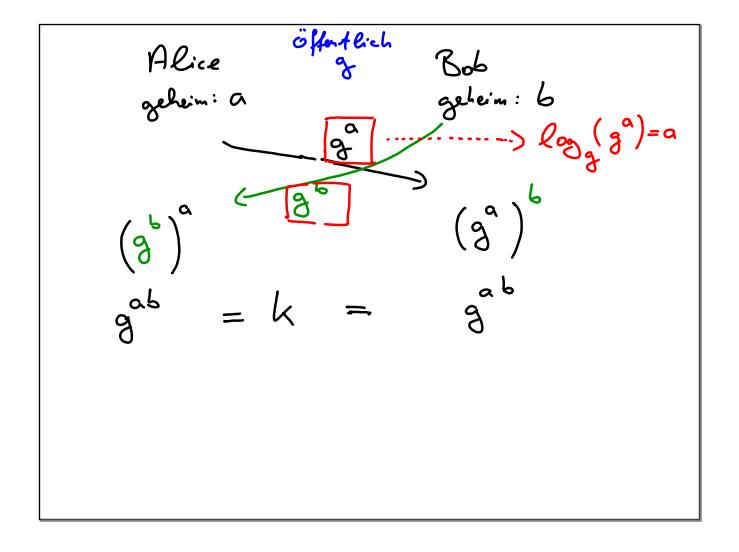
Public key Kryphographie

vorher: Symmethisch

Schlüsselaustausch

1976 Diffie-Hellman (
1978 RSA erstes Public key System



Diffe und Hellman schlagen als
Rechenbereich Zipe vor, Primealil
pe IP

Modulare Arithmetik

2 = ((mod 24)

 $22 + 8 \equiv 6 \pmod{24}$ $18 + 18 \equiv 12 \pmod{24}$ $2.18 \equiv 12 \pmod{24}$

$$6 - 8 = 22 \pmod{24}$$

$$7 \cdot 11 = 5 \pmod{24}$$

$$7 = \frac{5}{11} \pmod{24}$$

$$D_0 + 5 = D_1 \xrightarrow{1} \longrightarrow mod 7$$

$$3 + 5 = 1 \pmod{7}$$

Mathematische Grundlage

Tellbarkert:

a | b für a, b∈ R

€)]t∈limit a.t=6.

Modulo:

 $a = b \pmod{n}$ for $a, b \in 2$ and $a \in N$ $\Rightarrow n \mid (a-b)$ $\Rightarrow a \mid b \in 2$ $\Rightarrow a \mid b \in 2$ $\Rightarrow a \mid b \in 2$

Eigenschaften der mord-Pelahion $n \in \mathbb{N}$ flest $a = b \pmod{n}$ 1) Reflexivität $\sqrt{a} \sim a$ $a = a \pmod{n}$ $a = a \pmod{n}$ $a = a \pmod{n}$ $a = b \pmod{n}$ $a = b \pmod{n}$ 2) Symmetrie $\sqrt{a} \sim b \Rightarrow b \sim a$ $a = b \pmod{n} \iff a = b \pmod{n}$ $a = b \pmod{n} \iff a = b \pmod{n}$ $a = b \pmod{n} \iff a = b \pmod{n}$ $a = b \pmod{n} \iff a = b \pmod{n}$

$$n! a-b = n \cdot t = a-b = n \cdot t' = b-a = n!b-a$$
 $n \cdot t = -(b-a)$
 $n \cdot (-x) = b-a$

3) Transitivitit $\sqrt{a} \sim b \wedge b \sim c \Rightarrow a \sim c$ $a = b \pmod{n} \wedge b = c \pmod{n}$ $n \mid a - b \wedge n \mid b - c$ $n \cdot t = a - b \wedge n \cdot t' = b - c$ $n \cdot t' = a - c \Rightarrow n \cdot (t + t') = a - c'$

=) a=b (mod n)

ist eine Aquivalenz relation

= Wlassenbildung möglich

die zu a ägnivalenten Elemente

liegen in der klasse [a]

Beispiel: Klassen mod 3, d.h. n=3

$$a = 1$$
 $sncho$ alle $b = ni+$
 $b = 1 \pmod{3}$
 $[1] = \{..., -5, -2, 1, 4, 7,\}$
 $[2] = \{..., -4, -1, 2, 5, 8,\}$
 $[0] = \{..., -6, -3, 0, 3, 6, ..., \}$

mod n gitt es n verschiedene Äq.-klassen

Menge Z/nz bezeichnet die Menge der Glassen

Mit den Glassen kann man t, -, · rechnen,

z.B. [1]+[1]=[2]

aber [2]=[5], also auch [1]+[1]=[5]

Eindentige Gerteter (mod n)

[0], [1], [2], ..., [n-1]

Beispiel zu Diffre-Helanan (mod p)

$$p = 11 , g = 2$$

Alice
$$a = 9$$

$$2 \pmod{11}$$

$$\frac{7}{2} \pmod{11}$$

$$\frac{7}{2} \pmod{11}$$

$$\frac{7}{2} \pmod{11}$$

Cibang: mit PARI/GP

Diffie Hellman mit einer 16-Bit-Printall

$$2^{\frac{1}{2}} = 2^{\frac{1}{2}} \cdot 2^{\frac{3}{2}} = 5 \cdot (-3) = -15 = 7 \text{ mod } 11$$

16
=
5
-3
mod mod
11
11