Linear Cryptanalysis
Beijpiel: cipher ONE attackieren
Die Werte in der LA-Table geben
Relationen an, gross Beträge hode Warfrscheinlidheiten.

Cipher ONE

$$
c=\underbrace{\int\left(m+k_{0}\right)}_{x_{3}=y_{0}}+k_{1}
$$

$$
\text { in } 3 / 4 \text { alle Fion? }
$$

x_{3} Eingabe der S-Box (3. Bit)

- 3. Rit von $m+k_{0}$ wiod benótigt
-" $\left(m+b_{0}\right)_{3}$ "entsteht d urch

$$
m_{3}+k_{03}
$$

- $m_{3}+k_{03}$ mit 75% Wahrocheinhichkeit das O-te Bi'r der Ausgabe
- weil aber $\quad S\left(i n+k_{0}\right)+k_{1}=c$
folg $+S\left(m_{1}+k_{0}\right)=c+b_{1}$
daher $S\left(m+k_{0}\right)_{0}=C_{0}+k_{10}$
- also $m_{3}+f_{03}=c_{0}+k_{10}$ mit W. $7 . .5 \%$

Iusgesamt

$$
k_{03}+k_{10}=m_{3}+c_{0}
$$

mit 75% Wahrschenhlicikeit.
\Rightarrow eine Relation erspart dem Angreifer clas Ausp.nbieren eines leybits

Ebenso

$$
O \times c \leadsto O \times c
$$

1100

$$
k_{03}+k_{02}+k_{13}+k_{12}+1=m_{3}+m_{2}+c_{3}+c_{2}
$$

mit Wahrscheirh"inkent $\frac{8+6}{16}-=\frac{7}{8} \approx 87 \%$

Ulbuing:
ponîreter Ablanf für relevante Refationen

1: $\quad k_{00}+k_{12}=0$

32

$$
\begin{array}{l|llllll}
k_{00}+k_{12}=0 & \begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & 1
\end{array} 0 & 1 \\
k_{00}+k_{01}+\ldots & 1 & 1 & 0 & 0 & 0 & 0
\end{array} 00000
$$

zwe: Lósungen

