Beobachtung:

3 Bits \rightarrow nie $2^{6}-1$
4 Bits \rightarrow möglich
S
lektes Buit nisht bericksichtigen
\longrightarrow nie max. Periodenlänge
Modell fur LFSR
Polynome über de $\operatorname{Meng}\{0,1\}$ galois field mit 2 Ebmenten "Galois Korper"

Schieberegiuter mit n Zut

$$
\leadsto \text { Polynom } X^{n}+p_{n-1} X^{n-1}+\ldots+p_{2} x^{2}+p_{1} X+p_{0}
$$

Beispiel :

Einschub: Rechsen mit Polynomen ütor \mathbb{F}_{2}

$$
\begin{aligned}
(x+1) \cdot(x+1) & =x^{2} \underbrace{x+1}_{(\underbrace{1+1}+x+x} \\
& =x^{2}+1
\end{aligned}
$$

" + " ist in \mathbb{F}_{2} dasselbe wie "-"

Satz: Die Periodenlänge ist maxrimal i^{n-1}, wenn das zugehöriè Polynom

nicht zerlogba.

Irreduzibilitat vor Pi.Eymomen

$$
x^{2}+1=(x+1) \cdot(x+1)
$$

Polynom vom Gad 2 tertizet in Polynome vom Grad 1

$$
x^{3}+x^{2}+x=x \cdot\left(x^{2}+x+1\right) \text { auch reduribel }
$$

(Analogie:
Primfaltorzerbigung

$$
30=2 \cdot \underbrace{15}_{\text {zerligbar }}=\vec{i} \cdot 3 \cdot 5
$$

Untersuchung von Nallstellen funktioniert bis zum Grad 3

U"bung: suche irredaible Poegnome vom Giad 3

$$
\begin{aligned}
& P\left(x^{\prime}\right)=x^{3}+p_{2} \cdot x^{2}+p_{1} \cdot x+p_{0} \\
& p_{0}=1 \text { notwendiy, soust } P(x)=x \cdot(\ldots) \\
& P(1)=1+p_{2}+p_{1}+1 \stackrel{?}{=} 0 \\
& p_{1} \neq p_{2} \text { notwende.g. }
\end{aligned}
$$

übrij bleiben

$$
\left.\begin{array}{l}
X^{3}+X^{2}+1 \\
X^{3}+X+1
\end{array}\right\} \begin{aligned}
& \text { sind iureduisbel, weil } \\
& P(0)=P(1)=1
\end{aligned}
$$

Ubung: alle irred. Polynome vom Giad 4 finclen
\max Periodenlänge Be_{i} irreduzibel und

$$
\sqrt{i=0}
$$

\rightarrow multipliziere mit $X \bmod P(X)$ $i=i+1$ jolange Ergebnis $\neq 1$
wenn $i=2^{n}-1$, dann $P(x)$ jrimitiv

U"bing:
welche der uben gefundenen $P(x)$ voi:, Grad 4 sind primitiv

Beispiel: $P(x)=x^{3}+x+1$
starte mit 1, mult. mit X, danoch $\bmod P(X)$

1	x^{i} moil $^{\prime} f(x)$		
1	x	5	$x^{2}+x+1$
2	x^{2}	6	$x^{2}+1$
3	$x+1$	7	1
4	$x^{2}+x$		

$$
\begin{aligned}
& x^{3} \bmod x^{3}+x+1 \\
& x^{3}+x+1(\bmod =0 \\
& \left.x^{3}=+x+1\right)
\end{aligned}
$$

