

Studiengang Kommunikationsinformatik (Master) Studiengang Praktische Informatik (Master) Prof. Dr.–Ing. Damian Weber

Handout – Definitions

1 Set With One Operation

Let G be a set with $|G| \ge 1$.

A binary operation \circ on G is a map

 $\circ:G\times G\longrightarrow G.$

2 Semigroup

 (G, \circ) is called a *semigroup* if \circ is associative:

 $(a \circ b) \circ c = a \circ (b \circ c) \quad \forall a, b, c \in G.$

3 Monoid

A semigroup (G, \circ) is called a *monoid* if there exists a neutral element e with

 $a \circ e = e \circ a = a \quad \forall a \in G.$

4 Group

A monoid (G, \circ) is called a *group* if, for each $a \in G$, there exists an inverse element a^{-1} with

 $a^{-1} \circ a = e.$

5 Abelian Group

A group (G, \circ) is called an *abelian group* or *commutative group* if

 $a\circ b=b\circ a\quad \forall a,b\in G.$

— Seite 1 von 2 —

6 Ring: Two Operations

Let R be a set with $|R| \ge 1$.

Let ,,+" be an operation which makes (R, +) an abelian group. The neutral element of R is called 0.

Let $,, \cdot$ " be an operation which makes (R, \cdot) a semigroup.

Then R is called a ring if a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in R$.

The ring R is called *commutative* if ab = ba for all $a, b \in R$.

The ring R is called *ring with identity* if $1 \in R$ with $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$.

7 Field: Two Operations

Let F be a set with $\{0,1\} \in F$ and $0 \neq 1$.

Let F be a commutative ring with identity.

Let $(F \setminus \{0\}, \cdot)$ be an abelian group.

Then F is called a *field*.

The smallest number $m \in \mathbf{N}$ such that

$$\underbrace{1+1+1+\ldots+1}_{m} = 0$$

is called the $characteristic \ {\rm of} \ {\rm the} \ {\rm field}.$