htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag

Electrical Engineering Theory II

Module name (EN):
Name of module in study programme. It should be precise and clear.
Electrical Engineering Theory II
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering, Master, ASPO 01.10.2005
Module code: E804
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
3V+1U (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
6
Semester: 8
Mandatory course: yes
Language of instruction:
German
Assessment:
Oral examination

[updated 12.03.2010]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E804 Electrical Engineering, Master, ASPO 01.10.2005 , semester 8, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 180 hours (equivalent to 6 ECTS credits).
There are therefore 135 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
E908 Dynamics of Electrical Machines
E925 Applications of Motors
E926 CAE Methods in Electrical Machine Construction
E928 Special Machines


[updated 13.03.2010]
Module coordinator:
Prof. Dr.-Ing. Dietmar Brück
Lecturer:
Prof. Dr.-Ing. Dietmar Brück


[updated 12.03.2010]
Learning outcomes:
After completing this course, students will be able to apply the approaches and methods learned to explain phenomena in electrical engineering theory, as well as deriving solutions and developing measurement operations and interpreting their results.  Students will be in a position to use the general framework of Maxwell’s theory to derive solutions to specific problems and to assess their validity and applicability.


[updated 12.03.2010]
Module content:
1.Maxwell’s equations
2.Material relations, boundary and transmission conditions, radiative conditions  
3.Dispersive and non-dispersive media
4.Decoupling, Lorentz decoupling, Hertz and Fitzgerald vectors, scalar potential  
  and vector potential, Bromwich scalar potentials
5.Plane waves
6.Fresnel diffraction
7.Transmission line theory for coaxial, TP cable and optical waveguides
8.Current displacement

[updated 12.03.2010]
Teaching methods/Media:
Lecture notes, overhead transparencies, video projector, PC, CD

[updated 12.03.2010]
Recommended or required reading:
Baumeister, J.:  Stable Solution of Inverse Problems, Friedr. Vieweg u. Sohn, Braunschweig 1987
Becker, K.-D.:  Ausbreitung elektromagnetischer Wellen, Springer-Verlag Berlin, Heidel-berg, New York 1974
Becker, K.-D.:  Theoretische Elektrotechnik, VDE-Verlag Berlin 1982
Bergmann. L. und Schäfer,C.:  Lehrbuch der Experimentalphysik  Bd. III Teil 1: Wellenoptik, Walter de Gruyter, Berlin 1962
Blume, S.:  Nichtrotationssymmetrische Wellenfelder, Kleinheubacher Berichte 24, 1981, 1-16
Blume, S.:  Theorie elektromagnetischer Felder, Dr. Alfred Hüthig Verlag Heidelberg 1982
Bromwich, T. S.:  Electromagnetic waves, Phil. Mag. 38 [1919], 143-164
Buchholz, H.:  Elektrische und magnetische Potentialfelder, Springer-Verlag Berlin 1957
Clemmow, P. C.:  The Plane Wave Spectrum Representation of Electromagnetic Fields, Pergamon Press Oxford 1966
Collin, R. E.:  Field theory of guided waves, Mc Graw-Hill Book Company New York 1960
Courant, R. und Hilbert, D. Methoden der mathematischen Physik, Springer-Verlag Berlin 1968
Goodman, J. W.  Introduction to Fourier Optics, Mc Graw-Hill Book Company New York 1968
Hafner, C.:  Numerische Berechnung elektromagnetischer Felder, Springer-Verlag Berlin 1987
Harrington. R. F.:  Time-harmonic electromagnetic fields, Mc Graw-Hill Book Company New York 1961
Hofmann, H.:  Das elektromagnetische Feld, Springer-Verlag Wien 1974
Jones, D. S.:  The theory of electromagnetism, Pergamon Press London 1964
Magid, A. W.  Electromagnetic fields, energy and waves, John Wiley and Sons, Inc., New York
Maue, A.W.:  Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung, Z. Phys. 126 [1949], 601-618
Simonyi, K.:  Theoretische Elektrotechnik, VEB Deutscher Verlag der Wissenschaften Berlin 1977
Unger, H.-G.:  Elektromagnetische Wellen I, Friedr. Vieweg u. Sohn Braunschweig 1967

[updated 12.03.2010]
[Sun Dec 29 00:31:03 CET 2024, CKEY=eteia, BKEY=em, CID=E804, LANGUAGE=en, DATE=29.12.2024]