Sieving Methods for Class Group Computation

Johannes Buchmann, Michael J. Jacobson, Jr., Stefan Neis, Patrick Theobald,
and Damian Weber

Institut fiir Theoretische Informatik
Technische Universitdt Darmstadt

1 Introduction

Computing the class group and regulator of an algebraic number field K are
two major tasks of algorithmic algebraic number theory. The asymptotically
fastest method known has conjectured sub-exponential running time and was
proposed in [Buc89]. In this paper we show how sieving methods developed
for factoring algorithms can be used to speed up this algorithm in practice.
We present numerical experiments which demonstrate the efficiency of our new
strategy. For example, we are able to compute the class group of an imaginary
quadratic field with a discriminant of 55 digits 20 times as fast as S. Diillmann
in an earlier record—setting implementation ([BD91a]) which did not use sieving
techniques. We also present class numbers of large cubic fields.

2 The Algorithm

We will consider the problem of computing the class group CI(K) of an algebraic
number field K given by an irreducible monic polynomial of degree n = r + 2s,
where r is the number of real embeddings and s is the number of complex
embeddings of K into the field C of complex numbers. We denote the maximal
order of K by Ok. The norm of an algebraic number « will be denoted by N (a),
and the norm of an ideal a will be denoted by N (a). The class number of K will
be denoted by h and the regulator by R.

We briefly review the algorithm presented in [Buc89]. Let F'B be a set of
prime ideals over K and k = |FB|. For e = (ey,...,e;) € Z", we write

k
FB® =] »5
i=1

By App we denote all algebraic numbers « in K which, considered as principal
ideals, can be represented as a power product of the ideals of the factor base
FB,i.e.,

AFB={aeK| a-(DKzFBE,eGZ’“}.

Consider the maps
P - AFB — Zk
ar—e

®: App — ZF x]RT+S*1

ar— (e logloi(a)l,...;loglors1(a))),

where a - Ox = F'B® and the o; are the embeddings of K into C.
By [Buc89, Theorem 2.1] we know:

Theorem 1. Suppose that the ideal classes of the elements of FB generate the
class group of K. Then ®(Apg) is a (k + r + s — 1)—dimensional lattice with
determinant hR. Also, ' (Arg) is a k—dimensional lattice with determinant h
and we have Z*/® (Arg) = CI(K).

Based on this theorem, we can compute the class number and regulator by
finding relations, i.e., algebraic numbers a together with their decompositions
over the factor base. Having found enough relations to generate a sub-lattice of
&(Arpp) of full dimension, it can be checked whether these relations generate the
full lattice by applying the analytic class number formula

27 (21)* 1—2
———L_hR = -t
w\/[Ak] anl o]

where Ak denotes the discriminant of the field K and w denotes the number of
roots of unity in K. This formula enables us to compute a number h* with

h* < hR < 2h*.

If the determinant of the sublattice of #(Arp) is in this interval then the sub-
lattice is the full lattice. Otherwise, additional relations can be generated until
we find the full lattice.

3 Generating Relations

Several methods for finding relations among the factor base elements have been
suggested, for example, in [BD91a], [PZ89], and [CDyD093]. We show how to
use sieving techniques known from factoring algorithms to compute relations
very efficiently.

3.1 Quadratic Fields

For quadratic fields, we can apply a modification of the multiple polynomial
quadratic sieve (for details, see [Jac97]). Suppose that we find a € K, v,e € Z k
such that (a)/FBY = FBe. If K is imaginary quadratic then (e+v) € ¢'(Arp).
If K is real quadratic then (e + v,log|o1(a)|) € ¢(Arp). To find such numbers
a, we proceed as follows:

— Pick a random exponent v € {—1,0,1}* and compute the ideal a = FB".
Leta = az+%zz. Then, all elements in a have norm af(z,y), ¢,y € Z,
where f = aX? +bXY +cY? € Z[X,Y] and ¢ = (b* — A)/(4a).

— Find integers z such that f(z,1) = Hle N(p;)%.

— For each such z, set a = az + %. Then N (a) = af(z,1) is valid.

— Factor (a)/a =: b = FB®, using the fact that A'(b) = n and thus, e; = +€;.
We obtain a relation for each such integer x.

Note that this strategy has very much in common with the relation generation
part of the multiple polynomial quadratic sieve factoring algorithm [Sil87]. In
both cases, the heart of the method is finding smooth values of a quadratic
polynomial. As a result, it is not difficult to apply many of the tricks used in
implementing the factoring algorithm in our case. For example, we can easily
select the leading coeflicient of our polynomials to be a square-free product of

small primes and be about as large as —"A‘fl, where we will sieve the polynomial
over x € (—M, M). This has the effect of minimizing the values of the polynomial
over this interval and forces our relation matrix to be sparse. See [Jac97] for more

details.

3.2 The General Case

In the case of number fields of arbitrary degree, we may apply the sieving pro-
cedure of the number field sieve instead of the quadratic sieve.

As was the case for the quadratic sieve, the number field sieve was originally
invented for factoring integers (see [BLP93]). A variation of this algorithm has
been implemented by D. Weber to compute discrete logarithms in finite prime
fields ([Web97]). By abandoning the need to simultaneously find smooth numbers
in two number rings, we can use the number field sieve to find algebraic integers
of smooth norm in the number field for which we want to compute the class
group, i.e., algebraic integers with norm that factors over a given factor base.
Given a number field K of degree n with generating polynomial f, we can use
this tool to find smooth principal ideals and their decomposition

(¢ +yp)O = (FB)®

in the order O = Z[X/(f), where F'B' is a factor base consisting of prime ideals
of O and p is a zero of f. These factorizations can be lifted to factorizations in
Ok by computing ord,(a) for the index divisors p | [Ok : O]. In this way, we
obtain factorizations
(z +yp)Ok = (FB),
and vectors
(e,10g101()], - 108 o5 1(a)]) € B(Ars).

However, this method still seems to be impractical for large discriminants,
since the lattice generated by the relations usually does not have full rank.
Therefore, we also try to carry over the idea described for quadratic fields. In
general, we will proceed as follows:

— Select a random v € {-10,...,0,...,10}* and compute a = FB". Often v
will contain a certain prescribed non—zero entry at a position corresponding
to a linearly dependent row of the relation matrix. In most cases, this will
increase the rank of the relation matrix.

— Find «a, 8 € a of small height and thus, not too large norm.

— Compute f = N(aX+8Y)/N(a). f is a homogeneous polynomial in Z[X,Y’]
of degree n.

— Find integers z and y such that f(z,y) = Hle pS*, where all the prime
factors of f(x,y) are rational primes contained in the prime ideals in the
factor base.

— For each such pair (z,y) set v = az+ By. Then N (y) = N(a) f(z,y) is valid.

— Check if (7)/a =: b factors over the original factor base. If yes, we obtain a
relation for this pair (z,y).

In practice, one of the main problems of this method is to obtain polynomials
f that generate many smooth values. This problem consists of two parts. First,
we want a good generating polynomial for the number field, i.e., typically one
with small coefficients and with an equation order of small index. Second, we
want to choose o and £ in such a way that N'(aX + 8Y)/N (a) is well-suited for
sieving. It is well-known that finding polynomials suitable for the number field
sieve is a hard problem. It is even unknown how to check whether a given poly-
nomial will turn out to be good without actually trying it. In our case, we have
to use many polynomials and therefore cannot afford to test every polynomial
we compute, so we developed some heuristics to rule out the bad polynomials be-
forehand. Moreover, by reducing the ideal a and doing the remaining steps in the
reduced ideal, we can greatly improve the quality of the generated polynomials.
Those techniques will be explained in more detail in [BNW].

4 HNF Computation

After finding enough relations, we have to compute the Hermite normal form of
the lattice generated by the relations. Since this requires linear algebra over Z7,
this problem is considerably harder than the linear algebra step involved in fac-
toring or discrete logarithm computation. However, since the matrices involved
are sparse and contain small entries, it is possible to apply special techniques to
do this computation as follows.

In the first stage, we apply an algorithm for computing the Hermite normal
form using unimodular operations over Z. This algorithm is basically described
in [Coh95] and computes the HNF successively row by row. To conserve sparse-
ness and avoid entry explosion we use several heuristics in the pivot selection
and entry elimination step. These heuristics are based on results of [HM91],
[HHR93], [HM94a], [HM94b] and a lot of practical experience. The heuristics
used will be adapted, depending on the number of entries in the remaining part
of the matrix and the size of these entries.

If the entries become too large or the matrix becomes “too dense” (for exam-
ple, if more than two thirds of the remaining entries are non-zero), we switch to

stage two. We compute a multiple of the lattice determinant of the relation ma-
trix. In this step, we try to obtain as small a multiple as possible to simplify the
following computation. Finally we apply the modular algorithm for computing
the Hermite normal form described in [DKJ87].

5 Practical Results

In 1991, S. Diillmann [BD91a] needed 10 days on a distributed network of
fourteen Sparcl and SparcSLC computers to compute the class number of the
quadratic field with discriminant —(4 x 10%* + 4) (55 digits) using an improved
version of Hafner and McCurley’s algorithm with large prime variant. On a sin-
gle SparcUltral, this should be approximately equivalent to 7 days and 17 hours.
Now, using sieving methods, it takes only 8 hours and 53 minutes to obtain this
result on a SparcUltral.

We present our results for the imaginary quadratic case. We were able to
compute the class group for the first four of the following discriminants. For the
last two, we have so far only been able to compute relation matrices. The number
in parenthesis after the discriminant is the number of decimal digits. The class
group is presented as [mg ma ...ms 1], where ClI(K) = @<, c, Z [miZZ.

A|—4 x F; =4 x (227 +1) (40)

= —1 x 22 x 59649589127497217 x 5704689200685129054721

h |17787144930223461408

Cl|[2 8893572465111730704]

Ay|—(4 x 10°* + 4) (55)

= —1x22 x 101 x 109 x 9901 x 153469 x 999999000001 x 597795771563/
34533866654838281

h |1056175002108254379317829632

CI|[2 2 2 2 2 33005468815882949353682176]

A3 |—56759020500462061499204078404947821190422701840487390196283 (59)
= —1 x 235942923943814840172714410183 x 2405625418246410575130433/
26701

h |34708563502858399116135176220

C1 |[34708563502858399116135176220]

Au|—(4 x 10% + 4) (65)

= —1 x 22 x 1265011073 x 15343168188889137818369 x 515217525265213/
267447869906815873

h |178397819605839608466802693850112

Cl|[4 4 11149863725364975529180793365632]

A5 —46952046735522451306774137871578512166228058934334430430/ |
26971349460603 (70)
h |?77?
cl)?7?
Agl—(4 x 10 + 4) (75)
h |?77?
Cl|?77?

Run-time statistics compiled during these computations are contained in the
table below. Here, M is the radius of the sieving interval (z € (—M,M)), “#
forms” is the number of forms which were used for sieving, ¢, is the is the total
CPU time in minutes required to generate the relation matrix, ¢ is the total
time required to compute the class group, and t,;4 is an estimation of the time
required using the techniques in [BD91b]. The computations were all carried out
on a SPARC-ultra computer.

A||FB|| M |forms| tL t told
A111000| 69556 436/ 5.73| 7.95] 533.31
A5|4100(333836| 5231| 108.28| 532.24|11098.69

As3|5500|470308| 15711| 315.79(2338.28 ?
A4|7300]628972| 25978| 855.13|6457.28 ?
A5| 8800|779084(143678|5007.43 ? ?

Note that the 55 digit discriminant here is that computed by Diillmann in
[BD91a]. Using large prime variation, we note a considerable speed up for the
part of the algorithm finding the relations. The column labelled “% lp” contains
the percentage of full relations which were formed form large prime relations.

A||FB|| M |forms|%lp| tL

A1|1000| 69556| 279(22.78| 4.81
A2[4100|333836| 3081|24.26] 38.14
Ag| 5500470308 7984|52.05| 123.69
Ay4|7300(628972| 9642|49.09| 253.72
Ag|8800(779084| 61825|57.41{1456.79
Ag|9500(844988|174068|56.31(4671.23

For the real quadratic case, we present some statistics from computing rela-
tion matrices (using large prime variant) for discriminants A = 10° + 1.

i||[FB|| M |forms|%lp| tr

30| 355| 22628 90| 0.00 0.23
35| 650| 43756 191| 0.57 0.71
40|1150| 81572 346| 2.05 1.50
45|2500]192772 541| 3.26 4.65
50/3000(235652| 1075| 3.61| 10.55
554400363212 3122|15.37| 44.36
60/6100(522532| 6103(45.91| 149.99
65|7600|660332| 15909(52.46| 528.96
70| 8800|764572| 47955|55.48|1581.51
7519600(859412(164547(58.07|5739.84

Finally, we present some statistics for pure cubic extensions K = Q(¥/m)
using a result of H.J. Stender ([Ste77]), which allows one to precompute the
regulators of certain special fields. Here, I(Ak) is used to denote the decimal
length of the field discriminant, |F'B| is the size of the factor base, h is the class
number, ¢y, is the is the total CPU time in seconds (if not indicated otherwise)
required to generate the relation matrix and ¢ is the total time required to
compute the class group. The computations were all carried out on a Sparc4
computer with 32 MByte RAM.

m I(AKk) |FB| h tr, t
24313 — 17 22| 100 230666616 7 10
24313 — 13 22| 100 204575544| 6 9
24313 — 11 21| 100 67575654| 11 14
2431% — 1 14| 100 73143| 11 13
24313 + 1 19 100 11803968| 10 13
24313 + 11 22| 100 208464912| 6 9
24313 + 13 22| 100 171651312 9 11
24313 + 17 19| 100 8682552| 9 11

46189° — 17 29| 200 528112732248| 36 62
461893 — 13 28| 200 230653109628 43 61
461893 — 11 29| 200 534799522773| 39 58
461893 — 1 26| 200 84034542636| 46 62
461893 + 1 28| 200 614506494573| 41 57
461893 + 11 25| 200 21657374964 | 41 59
461893 + 13 30| 200 1201562002152| 36 56
461893 + 17 29| 200 439589101464| 41 62
4869293°% — 17 38| 400 7672357980222192(130| 6 min
48692933 — 13 40 400| 181790041779396270(136| 7 min
48692933 — 11 42| 400| 732630532207386456(172(6.5 min
48692933 — 1 41| 400(1842592025672169858(133| 6 min
48692933 + 1 41| 400| 931340490377083533|123| 6 min
48692933 + 11 37 400 8165641344661584(143| 6 min
48692933 + 13 42| 400(1038577938978984723(121(6.5 min
48692933 + 17 42| 400(1028253243988827468|118(6.5 min

m l(AK) |FB| h tr, t
8405644393 — 17 55| 700(3842073100240397835871905|77 min|115 min
8405644393 — 11 54| 700| 808279508202073001953848|74 min|107 min
840564439° — 1 55| 700(4813779331073984156486937|43 min| 76 min
8405644393 + 1 54| 700(1806681492048597457841100(76 min|115 min
8405644393 + 13 55| 700(265313055849856849723828543 min| 83 min
8405644393 + 17 53| 700| 165032036039112923443113|66 min|102 min

References

[BD91a] J. Buchmann and S. Diillmann. Distributed class group computation.
In J. Buchmann, H. Ganzinger, and W.J. Paul, editors, Informatik —
Festschrift aus Anlaf des sechzigsten Geburtstages von Herrn Prof. Dr.
G. Hotz, volume 1 of Teubner—Texte zur Informatik, pages 68-81. B. G.
Teubner, 1991.

[BD91b] J. Buchmann and S. Diillmann. A probabilistic class group and regulator
algorithm and its implementation. In Computational number theory, Proc.
Collog., Debrecen/Hung. 1989, pages 53-72, 1991.

[BLP93] J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance. Factoring integers with
the number field sieve. In A. K. Lenstra and H. W. Lenstra, Jr., editors,
The development of the number field sieve, number 1554 in Lecture Notes
in Mathematics, pages 50-94. Springer, 1993.

[BNW] J. Buchmann, S. Neis, and D. Weber. Computing class groups with the
NFS. to appear.
[Buc89] J. Buchmann. A subexponential algorithm for the determination of class

groups and regulators of algebraic number fields. In Séminaire de Théorie
des Nombres, pages 27-41, Paris, 1988-89.

[CDyDO93] H. Cohen, F. Diaz y Diaz, and M. Olivier. Calculs de nombres de classes
et de régulateurs de corps quadratiques en temps sous-exponentiel. In
Séminaire de Théorie des Nombres, pages 35—46, Paris, 1993.

[Coh95] H. Cohen. A course in computational algebraic number theory. Springer,
Heidelberg, 1995.

[DKJ87] P. D. Domich, R. Kannan, and L. E. Trotter Jr. Hermite normal form
computation using modular determinant arithmetic. Mathematics of Op-
erations Research, 12, 1987.

[HHR93] G. Havas, D. F. Holt, and S. Rees. Recognizing badly presented ZZ-
modules. Linear Algebra and its Applications, 192, 1993.

[HM91] J.L. Hafner and K.S. McCurley. Asymptotically fast triangularization of
matrices over rings. SIAM J. Comput., 20:1068-1083, 1991.

[HM94a] G. Havas and B. S. Majewski. Hermite normal form computation for in-
teger matrices. Technical Report TR0295, Key Centre for Software Tech-
nology, Department of Computer Science, The University of Queensland,
1994.

[HM94b] G. Havas and B. S. Majewski. Integer matrix diagonalization. Techni-
cal Report TR0277, Key Centre for Software Technology, Department of
Computer Science, The University of Queensland, 1994.

[Jac97] M.J. Jacobson, Jr. Applying sieving to the computation of quadratic class
groups. to appear in Math. Comp., 1997.

[PZ89)]
[Si187]

[Ste77]

[Web97]

M. Pohst and H. Zassenhaus. Algorithmic Algebraic Number Theory. CUP,
1989.

R. D. Silverman. The multiple polynomial quadratic sieve. Math. Comp.,
48:757-780, 1987.

H.-J. Stender. Lisbare Gleichungen az™ — by™ = ¢ und Grundeinheiten
fiir einige algebraische Zahlkérper vom Grade n = 3,4,6. J. reine angew.
Math., 290:24-62, 1977.

D. Weber. On the computation of discrete logarithms in finite prime fields.
PhD thesis, Universitidt des Saarlandes, 1997.

