Discrete Logarithms: Recent Progress

Johannes Buchmann!, Damian Weber?

! Technische Universitit Darmstadt
Alexanderstrafie 10
D-64287 Darmstadt
buchmann@cdc.informatik.tu-darmstadt.de

2 Institut fiir Techno— und Wirtschaftsmathematik
Erwin—Schrédinger—Str. 49
D-67663 Kaiserslautern
weberQitwm.uni-kl.de

Abstract

We summarize recent developments on the computation of discrete loga-
rithms in general groups as well as in some specialized settings. More specifically,
we consider the following abelian groups: the multiplicative group of finite fields,
the group of points of an elliptic curve over a finite field, and the class group of
quadratic number fields.

Keywords: Discrete Logarithms, Groups, Cryptography

1 Introduction

Within the last few years, due to applications in cryptography, an enormous
interest has grown in the question of the actual difficulty of the discrete loga-
rithm (DL) problem in groups. In this paper we summarize recent developments
concerning this computational problem.

On the one hand, cryptographers want to find finite groups where this prob-
lem is presumably hard — or even better — provably hard. On the other hand,
competition arises due to the research in the area of computational number the-
ory where efforts are made to develop efficient algorithms to solve such problems,
and exhibiting weaknesses of the corresponding cryptographic protocols.

Since the proposal of the Diffie-Hellman key exchange protocol [13], several
other protocols have been developed, whose security depends on the difficulty
in solving the DL problem. The DL problem for a group G may be stated as
follows.

Given a, b € G, find an x € 7, such that

a* = b, (1)

or prove that such an z does not exist. If x exists, we call the minimal non-
negative solution of (1) the discrete logarithm of b with respect to a. We will
stick to this notation throughout this article.

Motivated by the existence of subexponential algorithms for G = GF(p)*,
the designers of new cryptosystems incorporate other groups into their proto-
cols, in order to avoid subexponential attacks. Though not possible in any case,
sometimes the designer may use an arbitrary group with the only precondition
that the DL problem be hard (for example the zero—knowledge protocol for DL
from [8,9]). Among these are the group of points of an elliptic curve over a finite
field [15] as well as the Jacobian group of a hyperelliptic curve [16]. For none
of these a subexponential algorithm is known. For some special cases, which
are eagsily avoided in cryptographic applications, however, faster algorithms are
known. This is the case for elliptic curves of trace 1 [30], hyperelliptic curves of
large genus [1] and class groups of imaginary quadratic number fields [4].

When trying to solve the DL problem, a first approach is to use generic algo-
rithms which work in any group and use only group operations (multiplication,
inversion, equality testing). In section 2 we review both a deterministic and a
probabilistic algorithm which produce a solution of (1) after at most O(+/|G])
group operations. As we will see, both algorithms are optimal in the sense that
O(+/]G]) is shown to be a lower bound for generic algorithms.

In section 3 the group of points of elliptic curves over GF'(p) and GF(2") is
considered. We summarize the results of the probably largest effort to date to
attack a DL problem via the implementation of a generic algorithm.

Algorithms of subexponential type can be found if there is an efficient way to
produce relations among group elements. That means to form non—trivial power
products of elements of a small set which evaluate to the unity element of the
group. This is the case, for example, in finite prime fields. The recent practical
progress in this setting is surveyed in section 4.

2 Generic Algorithms
Let G be a finite abelian group. In this section we consider algorithms which,
given two elements g, ¢’ € G, only make use of three types of operations:

— computing gg' € G,
— computing g~ € G,
— deciding whether g = ¢'.

These are referred to as group operations. We denote the identity of G by 1.

2.1 Reducing to Cyclic Groups

It is well known that there are positive integers mq,...,mg, k > 1 — the invari-
ants of G — where m; divides m;11 for 1 < i < k such that

G%E/mlﬂx---xﬂ/mkﬂ. (2)

The DL problem in the group on the right hand side of (2) can be reduced

to the DL problem in each of the ZZ/m;Z. With m := m;(1 < i < k), solving

the DL problem in Z/mZZ means solving the congruence

ax = bmod m

which can be done in polynomial time by means of the Euclidean algorithm.
At first sight, this suggests that the DL problem is easy in general since (2)
describes the structure of any finite abelian group. The problem, however, is
that in general neither the invariants of G nor the isomorphism of (2) is known.
The difficulty of computing discrete logarithms in G is therefore closely related
to the difficulty of finding the invariants of G and the isomorphism of (2).

If computing the invariants is possible, the problem can be reduced further
to groups of prime order as we shall see in the next section.

2.2 Reducing to Prime Order Groups

We recall a method by Silver, Pohlig and Hellman, which first has been described
for GF(p)*, when p— 1 is smooth. This method works for arbitrary cyclic groups
G of order n and can be used to reduce the DL problem in G to DL problems
in prime order groups G,, where r|n.

Let r be any prime dividing n and h an integer with h > 1. Let " be a power
of r dividing n; then we are going to compute z modulo r".

Suppose (1) is solvable. If h =1, solve a® =b mod G/G". This group has
prime order r. Then a*® = a”c¢" for some ¢ € G. If g is a generator of G with
g = a, g = ¢, we obtain lzg = Iz + kr which is equivalent to = o mod r.

Assume now that we know the value of z mod r*~', written as
T=xo+ 3T + T2 + -+ - + $h_2rh_2 mod r*~1.
Set
! —1
a = a®P /7
b (p—1)/7"
b =
T\ groteirtaer? o tap_prh =2)
Because of

a" =1 and
b'" =1 mod p
both a’ and b’ are members of the unique subgroup G, of order r in G.

Solving
a1 =4 for xp_1,

we obtain

b (p-1)/r"
alwh_l —
a®oteirtaari4- oty _grh—2 :

p=1 h—1 p—1
1Th—1 Th—1\"7 — 7 Th—1" R
a'®r-1 = (a h 1) T =a h

With

it follows that

p—1
(azo+w1r+wzr2+~~~+wh—17"h_1) rh b

p—1
h

™

which is equivalent to

h—1

T =Tg+ T17 + Tor? 4 - + a:h_;;rh_2 + Tp_1T mod 7".

2.3 Shanks’s Baby—Step—Giant—Step Algorithm

The first algorithm, which is deterministic and runs in time O(y/n) is Shanks’s
Baby—Step—Giant—Step algorithm [27]. Let m = |y/n|+1, such that x = zym+2
with (unknown) 1,22 < m. After computing a set M := {a™?|0 < i < m} (the
giant steps), it remains to decide whether one of the elements a=7b, 0 < j < m
lies in M (the baby steps). If a match is found, a™ = a~7b, therefore = := mi+j
satisfies (1). Otherwise, b is not contained in the subgroup generated by a. Obvi-
ously, this algorithm requires at most T'(n) = 2/n+T"(y/n)+/n group operations,
where T"(m) is the time to decide membership for a given element in M. Linear
search in M would cause T'(n) > n, which is slower than the trivial algorithm.
With a total ordering of the representation of group elements, however, one may
sort M and do binary search on M. There are sorting algorithms which sort m
elements within time O(mlogm) (for example heapsort [11]); binary search on
m elements consumes time O(logm). Summing up, we obtain

T(n) = Cy/nlogn

for some constant C, which is O(n'/?t€) for all € > 0. Because M has to be
stored, this algorithm also consumes O(y/n) space. We note that there is a
time/memory trade—off by reducing the table size m < \/n and carrying out
n/m > y/n membership tests.

By refining this method a considerable theoretical and practical improvement
is achieved by Buchmann, Jacobson and Teske (BJT) in [5]. The authors extract
the discrete logarithm in time O(y/z +1og+/z) by using a table of O(/z) entries.
Note that the running time depends on the (unknown) discrete logarithm itself.
In the case that the DL does not exist, the running times and space requirements
hold for = := ordga. In their paper also the practical significance is illustrated
on the special case G = CI(A) of the ideal class group of imaginary quadratic
orders. The largest example is given for A = —4 - (10%° + 1) where G is the
subgroup generated by the ideal over 7 which consists of 1856 197 104 elements.
Clearly, the smaller x the performance compared to Shanks’s original algorithm
is the better, as can be seen from table 1.

2.4 Pollard’s Probabilistic Algorithms

The advantage of Pollard’s algorithms is the use of constant space while preser-
ving an ezpected running time of O(y/n). In their original version, these algo-
rithms have been proposed for GF(p)* [22].

The main idea here for computing x is to produce iteratively a sequence of
elements (d;);>1,d; € G, where all the d;’s are of the form

akul.

z | Shanks BJT
371239423 | 80 sec | 55 sec
742478843 | 91 sec | 80 sec

1113718263 | 106 sec | 101 sec
1484957683 | 113 sec | 128 sec
1856197103 | 106 sec | 105 sec

Table 1. Original Shanks and its Refinement (BJT)

So (d;) will become periodic after at most n iterations. For a sequence produc-
ing group elements at random, this can be expected to happen in an expected
number of O(y/n) steps (birthday paradoxon). The computation stops when
dy = d; mod p for some pair (i,4') is recognized. Then

a*! = d; = dy = a'b"

and
R pl-l —

and therefore
(k—k +x(l—1")) =0 mod n,

which reveals z, provided that ged(l —I',n) = 1.

There are two methods of finding repetitions in sequences. Pollard’s method
finds the pair (¢,4") by computing the sequence twice as (d;) and (da;), waiting
for (d;) = (da;). This will be the case when j is a positive multiple of the period
length.

Instead of computing the sequence twice, Brent’s algorithm [3] remembers
the sequence elements dy: and compares them to dyijj, 1 < j < 2¢. It can be
shown that comparison is not needed for 1 < j < 3-2¢—L,

It is worthwhile examining different variants of producing the (d;), because
ideally the (d;) should behave like a random sequence. In this case the expected
length of this sequence can be shown to be 1.25/n until an element of G occurs
twice. The original sequence of Pollard uses a partition of G = S; U S2 U S3 with
equally sized S; and is defined by

adz-, d; € 51
dz’—',—l = dzz, d; € Sy
bdi, d; € 53

where an arbitrary product of the form a*b' may be chosen as a start value.
The sequence of exponents of a produced by this definition are computed by
ei+1 = e; + 1 and e; 11 = 2e;, starting from some ey = k + zl. A theoretical
result about the “randomness” of that sequence seems not to be known. Teske
[31] constructs a sequence where a distribution which is close to uniform can be
proven. Her construction partitions G into 20 subsets Si,...,S29 and replaces

the definition of d;;1 above by

divt = med;, d; € Sy and 1 <k <16
LT @2, di € Sy oand 17 < k< 20,
where the my are initially set to random power products of a and b.

By experiment she determines an average sequence length of 1.596\/@ for
Pollard’s original sequence and 1.292\/@ for her newly constructed sequence.
The impact on actual computations is illustrated at prime order subgroups of
elliptic curves over prime fields. For a subgroup size of 13 decimal digits the
average running time over 40 runs of Pollard’s original algorithm has been 27.3
minutes in contrast to 22.5 minutes of the improved version. This reflects the
stable improvement of about 20% of the total running time observed for all group
sizes.

A version which allows for parallel computations has been proposed in [32]
and is of practical significance as long as there is no subexponential algorithm
available for the group under consideration.

2.5 Shoup’s Lower Bound

A recent result of Shoup shows that the two algorithms discussed above are opti-
mal for groups where the group operations themselves are the only computations
possible within an algorithm [29]. In fact, there are groups where no algorithms
with running time better than O(y/n) are known (elliptic curves, Jacobians of
hyperelliptic curves).

Let G be a cyclic group of order n. Starting from the notion of an oracle which
can be asked for the result of the group operations defined at the beginning of
section 2, Shoup computes the probability that an algorithm outputs the correct
answer to a DL problem in G after m oracle calls. The enumeration of elements
of G can be thought of as encodings of the n (distinct) powers of a which are
given by a map o : Z/nZL — S, where S is a set of binary strings representing
elements of G uniquely. The problem a® = b in G is then rewritten as follows.
Given (o(1),0(z)), find a y € Z/nZ such that o(y) = o(x).

We cite Shoup’s main result concerning generic DL algorithms.

Theorem. Let n be a positive integer whose largest prime divisor is p. Let S C
{0,1}* be a set of cardinality at least n. Let A be a generic algorithm for 7ZL/n7L
on S that makes m oracle queries, and suppose that the encoding function o of
ZL/nZL on S is chosen randomly. The input to A is (0(1),0(z)), where x € ZL/nZL
is random. The output of A isy € ZL/nZL. Then the probability that x = y is
O(m®/p).

The conclusion is that for achieving a non-negligible probability for the event
of success, one needs O(,/p) oracle calls; thus a generic DL algorithm performs
at least O(,/p) group operations.

2.6 General Index Calculus

The index calculus methods which typically achieve a sub—exponential running
time depend on the ability to efficiently generating so called relations among
group elements. More precisely, if one fixes a (small) subset S := {g1,...,9x} C
G and can find elements of the set

L:={(e1,...,ex) | gi*--- 95" =1}

in an efficient manner, then Shoup’s lower bound is not cryptographically rele-
vant for G. We note that L is a lattice in ZF and

é:. I* — G
(617"'76/6) = gfl"'g]eck

a homomorphism with kernel L so that
ZF|L=G.

From the conditions of section 2.5 we see that the source of producing relations
must use some information “outside” G. For example in GF(p)*, we may use
the fact that GF(p) is a field, or in class groups of quadratic number fields, we
have a reduction theory. Whenever G happens to have an environment with such
properties, one can apply the index calculus method, an outline of which is given
below.

1. choose factor base:

fix a set S := {g1,...,9x} C G of group elements, where ¢g; :=a, g2 :=b
2. produce relations:

find relations of the form

git gt =1, (1<i<)

terminate this step when rank(e;;) =k —1

3. linear algebra step:
set A := (e;;) and compute a solution to Az =0 mod |G|

4. extract solution:
Let x = (x1,...,zk) be a solution of step 3. Since the rank is k — 1, we must
have A -z = (loggi,...,loggr) mod |G| for some A € Z. The logarithms
with respect to g1 — in case they all exist — are then found by setting A =
z7! mod |G].

When analyzing an index calculus variant, several problems have to be ad-
dressed. The parameter k is subject to optimization. If k is too small, the time to
find relations is probably too large; on the other hand, if & is too big, the linear
algebra step consumes too much time. For step 2, the probability to find a rela-
tion must be taken into account. In step 3 the linear dependency is found modulo
prime divisors of |G|, sparse matrix techniques such as Lanczos, Conjugate Gra-
dient can be used. In this case, the running time of this step is O(k? + kw), where
w is the total number of non—zero entries among the e;;.

3 Elliptic Curves

Today, the best general discrete log algorithms for the group of points of an
elliptic curve over a finite field K are the generic ones given in the preceding
section. For two special cases, a more efficient way has been found so far. An
efficient way to find relations in this group has not been found yet, so the index
calculus idea is not applicable. Thus we are left with Shanks’s and Pollard’s
algorithm, but due to the enormous space requirements of the former; only the
latter one is actually applicable for larger groups in practice (say |G| > 10%°).

Let f(X) = X34+ ax X%+ a1 X +ap € K[X].

An elliptic curve (EC) over K is defined as the following set of points

E={(z,y) |y’ = f(2)} C K x K} U{oo}
if char(K') # 2. By change of variables this may be transformed to
E={(z,y) | y* =2° +az +b} C K x K} U {c0}

for appropriate a,b € K if char(K) # 3.
If char(K) = 2, an elliptic curve is given by

E={(z,y) |y*+y = f(z)} C K x K} U {o0}.

The addition law of two points (z1,y1) + (z2,y2) = (z3,y3) € E is given by the
following rule (char(K) ¢ {2,3}):

1. if 21 # 22 let m:= (y2 — y1)/(z2 — 71), and m := (3z? + a)/2y;1 otherwise
2. x3 :=m?2

3. y3:= —y1 + m(z1 — z3)-

—T1 — X2

For char(K) € {2,3} similar addition rules hold. With this addition, (E, +)
is an abelian group. Let K consist of ¢ elements. By a theorem of Hasse, the
number of elements of E is bounded by

g+1-2/G< #E<q+1+2yq.

If #F = q+ 1 —t, we call t the trace of E.

3.1 General Elliptic Curves

Since 1997, there have been existing several public EC-DL challenges for finite
fields [7]. By utilizing the ideas of [32] some of them have already been broken
(electronic messages on the number theory net, Harley et al.), see table 2 on the
following page.

#K | # group operations
270 1.7-10°
Pro 1.4-10°
289 1.8-10'8
Pso 3.0-10%°
297 2.2-102
Do7 2.0-10%

Table 2. Solved Elliptic Curve DL Challenges

Here, prg, psy, and py; are 79—, 89—, and 97-bit primes respectively.
We now turn to the two special cases which can be solved efficiently.

3.2 Elliptic Curves of Trace Zero

In 1991, Menezes, Okamoto and Vanstone [21] published a method (MOV-
reduction) to reduce the discrete log problem on E over F, to the discrete log
problem in (Fgx)* for small k, provided that E is supersingular. A curve of F,
with ¢ = p™ is called supersingular if its trace is divisible by p. In particular this
covers curves over F, of order p+ 1. Consequently, this leads to a subexponential
discrete log algorithm for supersingular curves.

Koblitz and Balusubramanian, however, showed that it is extremely unlikely
for a random curve to be vulnerable by the MOV-reduction [2].

3.3 Elliptic Curves of Trace One

In 1997, Smart [30], and independently Semaev [26], Satoh and Araki [23] found
an efficient method for curves E over Fy, if E has p elements. The idea makes
use of considering E over @, the p-adic extension of the rationals. In a certain
related group to E(Q,), there exists a logarithmic map which can be evaluated
in polynomial time. It turns out that it suffices to approximate the arithmetic
operations in Q,, by operations in 7 /p*Z.

4 Prime Fields

We now turn to a special version of the index calculus algorithm of section 2.6.

4.1 Sketch of the Number Field Sieve

Today the Number Field Sieve (NFS) is the asymptotically fastest known method
to compute discrete logs in prime fields [14,24]. Its running time is given by
L,[1/3,(64/9)(/3)], where

Ly[v, 8] = exp((6 + o(1))(log p)” - (loglogp)' ™).

This is the same running time as for factoring integers as large as p. This algo-
rithm has been implemented and lead to a record of 85 decimal digits for general
p as well as 129 decimal digits for special p. In this algorithm, the computations
take place in two number rings Z[o;] and Z[as], where a; are zeros of two
polynomials f; € Z[X], i = 1,2 respectively. The number rings are linked to
(Z/pZL)* by two homomorphisms

i Llo;] — Z/pZL

with
p(on) = p(az2).

Consequently, the factor bases consist of prime ideals of the ring of integers of
Q(a;). Note that the factor base members are not element of the group in which
the DL has to be computed. An early special case of the NFS, the Gaussian
Integer method, was published in [10] which we obtain by setting Z[o] = Z
and Z[as] to be an imaginary quadratic principal ideal ring.

The relations consist of (small) pairs (¢, d) € Z x 7, where the ideals (c+day)
and (¢ + das) simultaneously split over the corresponding factor bases. The
original number field sieve adaptation uses Z[a;] = Z such that the members of
the first factor bases which are (principal) prime ideals of Z can be interpreted as
elements of G (take a generator r of each prime ideal and consider ;1 (r) € G). In
a generalization of that adaptation where Z[a;] # Z # ZL[az] we can compute
the logarithm of b € G if there exists v € goj_l(b) € Za;] such that (vy) splits
over factor base j for j =1 or j = 2 [33]. We observe that the parameters of the
DL problem, a and b, have to be small in order to show up as factors of elements
of type ¢+ day and ¢+ day. For the base a this is not a severe problem because
a small generator mod p can be found in polynomial time [28]. The parameter
b is usually reduced by finding an expression b = [] s; mod p with small s; (see
section 4.2).

As above a (sparse) matrix consisting of exponents (e;;) is constructed, (e;;)
being the exponent of factor base element number j in relation number i. Re-
ducing to prime order groups leads us to solving the linear algebra problem over
2ZL/q7ZL where g|p — 1. Let (ys,...,yr) be a solution to A’y = 0 mod g where
the matrix A’ consists of the rows 3,...,k of A. Let (¢;,d;) be the pair which
produces relation number [(1 <1 < k).

Then

[1 e (e + diar)” = gfg52u
[#2(c + dian)” =07

for some u,v € Z/pZL and z1,z3 € 7L, provided that two conditions hold.
Firstly, the ideals [¢1(c; + diaj)¥* have to be g-th powers of principal ideals;
secondly, the units which are congruent to 1 mod ¢ must be ¢—th powers. These
assumptions, though heuristic, can be reasonably justified, see [24].

Because of @1 (¢ + dja1) = @a(c + djas), dividing both equations results in
a DL solution modulo g:

1 T2 —

91'95° = (v/u)? mod p.

In practice, numerous refinements have been discovered during the few years
after the first implementation of the NFS [6]. The most effective one surely is
the large prime variation, where relations of the form

gfl...gzk.hzl

are also accepted, where h (the large prime) is not member of the factor base.
Dividing a second relation of this form by the one given above immediately
produces an ordinary relation. This has been extended to allowing multiple h’s,
usually two per factor base. Limiting the number of h’s is due to the method
they are recognized. After the sieving process, all powers of factor base elements
are found. Therefore, allowing one h requires one primality test per relation after
the sieving stage. Allowing a rest of the form h; - he already requires the use of a
fast special purpose factoring method to extract h; and he. This is practical as
long as the h’s fit in a computer word, so our special purpose factoring method
has to split integers of size 2%%. In literature, the use of Pollard’s p — 1 method,
Shanks’s square form factorization method and Lenstra’s elliptic curve method
are reported. The combination of relations having more than one large prime is
non—trivial. The basic case of two large primes in factoring algorithms was settled
by [19], extended by [37] to four large primes, and adapted to the discrete log
case in [34].

The distribution of the sieving process on many workstations and running
the linear algebra step on a massively parallel machine (usually the Lanczos
method or the conjugate gradient method) are subject of optimization, too [12,
17,18].

For general finite fields GF(p"), the number field sieve (n < (logp)/?) and
the function field sieve (n > (logp)?) can be employed. For the “gap” between
both of them, we are not aware of a subexponential time algorithm. A detailed
theoretical survey of both methods and on the current status concerning the gap
can be found in [25].

4.2 Experimental Results

Perhaps the most remarkable result of the DL variant of the NFS has probably
been the successful solving of McCurley’s 129—-digit discrete logarithm challenge
[36], which McCurley published in his overview paper on the DL problem [20].

In view of the Diffie-Hellman key exchange protocol introduced in [13], Mc-
Curley stated a challenge by using the following setup:

ba = 12740218011997394682426924433432284974938204258693
16216545577352903229146790959986818609788130465951
66455458144280588076766033781

bp = 18016228528745310244478283483679989501596704669534
66973130251217340599537720584759581769106253806921
01651848662362137934026803049

p= (739749 _736)/3
g=(p—1)/(2-739).

The order of the multiplicative group, which is generated by the element 7, splits
as follows: |(Z/pZZ)*| =2-739-q.

— Alice computes (using her secret key z4) as 74 = by (mod p).
— Bob computes (using his secret key xp) as 7% = bp (mod p).

Kevin McCurley asked for the common secret key K = 7(#4#5) (mod p)
which has been computed by Denny and the second author as

K = 38127280411190014138078391507929634193998643551018670285056375615 3)
045523966929403922102172514053270928872639426370063532797740808,

by first calculating

x4 = 6185869085965188327359333165203790426798764306952171345914622218 (4)
49525998156144877820757492182909777408338791850457946749734,

the secret key of Alice.

Since the probability of ¢ + da splitting over a factor base depends on the
discriminant of ZZ[a], primes of special form — such as McCurley’s choice of p —
serve as an attractive target for the NFS.

Within a total of &~ 180 mips years (mips=mega instructions per second),
enough large prime relations (with a maximum of two large primes per relation)
have been found over two factor bases of 35000 elements each.

Within a total of 1200 CPU hours, distributed on Sparc 4 workstations, the
following reduction of b has been found by a combination of trial division and
the elliptic curve factoring method:

141266132 p — t

d
” (mod p),

a

where
t=23'31'81'83'56'88'810'811 (5)
’U=353'$2'84'85'87'89'812.

with

s1 = 603623,
Sy = 165073039,
83 = 1571562367,
84 = 1601141623,
85 = 1715568391,
s¢ = 7575446399,
s7 = 13166825869,
sg = 265542836371,
s9 = 371303006453,

s10 = 4145488613977,
s11 = 4338202139093,
s12 = 5041332876473.

With the aid of 15 solutions of the linear algebra problem, we are able to deter-
mine the log of the 15 elements 2, 31, 353 and s;,...,s12. This step costs 911
hours on a Sparc 20 workstation and consumes 30 MB of main memory.

Alternatively, reducing the DL problem to smaller elements can be achieved
by means of a recent sieving method [35].

For primes of arbitrary form, the latest official record of a 85-digit p [35]
has been superseded by a 90-digit computation in May 1998 (electronic message
on the number theory net, Gaussian Integer implementation by Lercier/Joux).
In the 85—-digit computation, the Gaussian Integer method has been compared
to the NFS version with two quadratic polynomials (NFS2Q). With 30 mips
years, only 2/3 of the NFS2Q time is needed, and also the time for computing
the linear algebra solution has only been 1/3 of the NFS2Q version. The main
reason for both observations is that the numbers, which have to be split during
the algorithm, are slightly harder to factor over an equally sized factor base.
So, more pairs (c,d) have to be tested during the sieving stage, and, during the
elimination of large primes, more partials are needed to produce an ordinary
relation. The latter obviously increases the number of non-zero entries in the
relation matrix.

5 Conclusion

During the past few years there has been considerable progress on the ability
to solve discrete logarithm problems. It is a matter of taste whether schemes
are considered as secure, when subexponential attacks exist. As sharp lower
complexity bounds are typically hard to achieve, it is possible that exponential
attacks can be replaced by subexponential attacks, and subexponential attacks
by polynomial time attacks. The DL problem, however, will serve as a reliable
source for secure protocols as long as the cryptographers are not running out of
appropriate groups where no subexponential time algorithm is known. But there
is still the possibility that eventually all DL problems will be tackled easily.

We draw the conclusion that apart from DL and factoring, modern cryp-
tography urgently needs further number theoretic problems which can safely be
used as a setting for existing and future cryptographic protocols. For achieving
provable security, lower bounds in solving the corresponding problems are essen-
tial but these are either too difficult to establish or too restricted to a model not
sufficiently compliant with reality as in section 2.

References

1. L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm
for discrete logarithms over the rational subgroup of the Jacobians of large genus
hyperelliptic curves over finite fields. In Algorithmic number theory, number 877
in Lecture Notes in Computer Science, pages 28—40, 1994.

2. R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve
has subexponential discrete log problem under the Menezes—Okamoto—Vanstone
algorithm. Journal of Cryptology, 11:141-145, 1998.

3. R. P. Brent. An improved monte carlo factorization algorithm. Nordisk Tidskrift
for Informationsbehandling (BIT) 20, pages 176-184, 1980.

4. J. Buchmann and St. Dilllmann. On the computation of discrete logarithms in class
groups. In Advances in Cryptology — Crypto ’90, number 537 in Lecture Notes in
Computer Science, pages 134-139, 1991.

5. J. Buchmann, M. Jacobson, and E. Teske. On some computational problems in
finite abelian groups. Math. Comp., 66(220):1663-1687, 1987.

6. J. Buchmann, J. Loho, and J. Zayer. An implementation of the general number
field sieve. In Advances in Cryptology — Crypto ’93, number 773 in Lecture Notes
in Computer Science, 1993.

7. Certicom. ECC challenge. http://www.certicom.com/chal/, 1997.

8. D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demon-
strating possession of discrete logarithms and some generalizations. In Advances
in Cryptology — Eurocrypt’87, number 304 in Lecture Notes in Computer Science,
pages pp. 127-141, 1988.

9. D. Chaum, J.-H. Evertse, J. van de Graaf, and R. Peralta. Demonstrating pos-
session of a discrete logarithm without revealing it. In Advances in Cryptology —
CRYPTO’86, number 263 in Lecture Notes in Computer Science, pages pp. 200—
212, 1987.

10. D. Coppersmith, A. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p).
Algorithmica 1, pages 1-15, 1986.

11. Th. Corman, Ch. Leiserson, and R. Rivest. Introduction to algorithms. MIT
Press/McGraw-Hill, 1990.

12. Th. F. Denny. Ldsen grosser dinnbesetzter Gleichungssysteme tber endlichen
Primkérpern. PhD thesis, Universitit des Saarlandes/Germany, 1997.

13. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Infor-
mation Theory 22, pages pp. 472-492, 1976.

14. D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J.
Discrete Math., 6:124-138, 1993.

15. N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203—209, 1987.

16. N. Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1:139-150, 1989.

17. M. LaMacchia and A. Odlyzko. Solving large sparse linear systems over finite
fields. In Advances in Cryptology — Crypto ’90, number 537 in Lecture Notes in
Computer Science, pages 109-133, 1990.

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

R. Lambert. Computational aspects of discrete logarithms. PhD thesis, University
of Waterloo/Canada, 1996.

A. K. Lenstra and M.S. Manasse. Factoring with two large primes. Math. Comp.,
63:77-82, 1994.

K. S. McCurley. The discrete logarithm problem. In Cryptology and Computational
Number Theory, number 42 in Proc. Symp. in Applied Mathematics, pages 49-74.
American Mathematical Society, 1990.

A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. In Proceedings of the 23rd Annual ACM Symposium
on the Theory of Computing, pages 80-89, 1991.

J. M. Pollard. Monte carlo methods for index computation (mod p). Math. Comp.,
32:918-924, 1978.

T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves. preprint.

O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A
845, pages 409-423, 1993.

O. Schirokauer, D. Weber, and Th. F. Denny. Discrete logarithms: the effectiveness
of the index calculus method. In H. Cohen, editor, Algorithmic Number Theory —
ANTS II, number 1122 in Lecture Notes in Computer Science, 1996.

I. A. Semaev. Evaluation of descrete logarithms on some elliptic curves. Math.
Comp., 67:353-356, 1998.

D. Shanks. Class number, a theory of factorization and genera. In Proc. Symposium
Pure Mathematics, volume 20, pages 415-440. American Mathematical Society,
1970.

V. Shoup. Searching for primitive roots in finite fields. In Proc. 22nd Annual ACM
Symp. on Theory of Computing (STOC), pages 546-554, 1990.

V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in cryptology — Eurocrypt’97, number 1233 in Lecture Notes in Computer Science,
pages 256-266, 1997.

N. P. Smart. The discrete logarithm problem on elliptic curves of trace one. Journal
of Cryptology. to appear.

E. Teske. Speeding up pollard’s rho method for computing discrete logarithms.
In Algorithmic Number Theory — ANTS III, number 1423 in Lecture Notes in
Computer Science, 1998.

P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic appli-
cations. Journal of Cryptology. to appear.

D. Weber. Computing discrete logarithms with the number field sieve. In H. Cohen,
editor, Algorithmic Number Theory — ANTS II, number 1122 in Lecture Notes in
Computer Science, 1996.

D. Weber. On the computation of discrete logarithms in finite prime fields. PhD
thesis, Universitit des Saarlandes/Germany, 1997.

D. Weber. Computing discrete logarithms with quadratic number rings. In Euro-
crypt’98, number 1403 in Lecture Notes in Computer Science, 1998.

D. Weber and Th. Denny. The solution of McCurley’s discrete log challenge. In
Advances in Cryptology — CRYPTO0’98, number 1462 in Lecture Notes in Computer
Science, 1998.

J. Zayer. Faktorisieren mit dem Number Field Sieve. PhD thesis, Universitidt des
Saarlandes/Germany, 1995.

