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Abstract. In this article we survey recent developments concerning the
discrete logarithm problem. Both theoretical and practical results are
discussed. We emphasize the case of finite fields, and in particular, recent
modifications of the index calculus method, including the number field
sieve and the function field sieve. We also provide a sketch of the some of
the cryptographic schemes whose security depends on the intractibility
of the discrete logarithm problem.

1 Introduction

Let G be a cyclic group generated by an element ¢. The discrete logarithm prob-
lem in G is to compute for any b € G the least non-negative integer e such that
t¢ = b. In this case, we write log, b = e. Our purpose, in this paper, is to survey
recent work on the discrete logarithm problem. Our approach is twofold. On
the one hand, we consider the problem from a purely theoretical perspective.
Indeed, the algorithms that have been developed to solve it not only explore the
fundamental nature of one of the basic structures of mathematics but also are
themselves intricate, abstract objects which incorporate results and raise ques-
tions from a variety of mathematical areas. On the other hand, we recognize
the pleasure of a successful implementation and the growing cryptographic in-
terest in actual computations. We therefore present computational results when-
ever available and give a brief discussion in §2 of some practical cryptographic
schemes.

At first glance, the discrete logarithm problem as described above does not
seem difficult. If G is the additive group Z/nZ represented by the integers



{0,...,n — 1} and we let ¢ = 1, then it is a trivial matter to compute log, b.
The groups we consider in this paper, however, are represented in such a way
that the cyclic structure is hidden. In other words, the isomorphism that exists
between G and Z/nZ is not apparent. In some cases the representation has
properties that enable us, after much labor, to uncover the group structure. In
83 and §4, for instance, we consider the multiplicative group of a finite field. We
represent the finite field either as the quotient of a polynomial ring over a prime
field or the quotient of a number ring. The notion of smoothness in both types
of rings allows us to use an algorithm known as the index calculus method. In
the case that G is the class group of a number field, we will see in §5 that a
variation of the index calculus method can be used. In contrast, when G is the
group of points on an elliptic curve, no version of the index calculus method
has been developed, a fact which makes these groups particularly attractive for
cryptographic purposes.

The discrete logarithm problem is often compared to the problem of factoring
an integer. Many of the most prominent modern factoring algorithms have a
discrete logarithm analogue. The heuristically fastest factoring algorithm, the
number field sieve (NFS), is no exception. It has a conjectured expected running
time of

L,[1/3;¢4+0(1)] for n — oo,

where n is the number being factored, ¢ is a constant, and
Ly[s; ¢] = exp(c (log™)* (log log n)* ~*).

In this case, there are two corresponding discrete logarithm algorithms, the num-
ber field sieve and the function field sieve. Both of these algorithms apply to the
case that G is the multiplicative group of a finite field and both have, for a
broad range of finite fields, a conjectured expected running time equal to the
NFS factoring algorithm, with n replaced by the cardinality of the finite field.
Together, however, they do not achieve this running time for all fields and it
remains an open question to find an algorithm as fast as the NFS for all finite
fields. In practice the NFS has been implemented for prime fields, and the FFS,
in the form of Coppersmith’s algorithm, for fields of characteristic 2. Despite the
success of these methods, the computation of discrete logarithms in finite fields
lags behind the factoring of integers of size comparable to that of the finite field.
In part, this is simply due to the fact that less attention has been paid to the
discrete logarithm problem. In part, it reflects the presence of obstacles that are
particular to the discrete logarithm problem. One such impediment is the linear
algebra, which we discuss at the end of §4. In §6 we give a more general account
of open questions, both practical and theoretical.

2 Cryptography

We briefly describe three of the many cryptographic protocols whose security
depends on the difficulty of computing discrete logarithms and which are of



practical use to gain secret communication. Among those we do not discuss are
identification schemes ([60]) and hash functions ([16]). Note that, though our
second and third examples are formulated for the case that G is the multiplicative
group of a finite field, these schemes can be modified for other groups G, including
the group of points of an elliptic curve over a finite field. For a more extensive
discussion of elliptic curve cryptosystems, we refer the reader to [31], [47],[45].

Throughout this section, we will use the expression x Mod y to denote the
least positive residue of 2 modulo y.

2.1 The Diffie-Hellman protocol

A simple cryptographic scheme that uses the difficulty of the discrete logarithm
problem is the Diffie-Hellman key exchange protocol, which works for all groups
[22]. Suppose A and B are two persons who want to agree upon a secret key,
but only have an unsafe communication channel. First they choose a group G
and an element a € G. For security purposes, the order of a should have at
least one large prime factor. Next, A picks secretly za € Z and likewise B picks
zyp, € Z. Then A sends a*4 to B and B sends a®® to A. Both A and B can
compute a®A%8  which is their secret key. It follows at once that if the discrete
logarithm problem can be solved in G, then the Diffie-Hellman protocol can be
broken. There is a current challenge of McCurley which requires breaking the
Diffie-Hellman protocol [43]. He chooses for his group the multiplicative group
of Z/pZ, where p=(739 - 714 — 1472)/3. The decimal representation of p has
129 digits. For details concerning a first step in attacking the challenge see §4.3
and [68].

The Diffie-Hellman problem (DH) for a cyclic group G with generator g is,
given ¢2,g° for a,b € Z, to compute the element g2® € G. Boneh and Lipton
in [9] show that if a subexponential algorithm for DH in a group G exists,
then a subexponential algorithm for the discrete logarithm problem (DL) exists.
In what follows, however, we concern ourselves with polynomial equivalence.
To make this precise, we introduce a DH-oracle for G = (g), which on input
(9%,9%) € G x G outputs g** € G within constant time. The question then
is whether it is possible to compute z from g¢g* by using polynomially many
operations in G and polynomially many calls to the DH-oracle for G. In general,
the question is unanswered.

In [8], den Boer demonstrated the polynomial equivalence of DH and DL
in (Z/pZ)*, for p prime, in the case that the totient of p — 1 is smooth with
respect to a bound which is polynomial in logp. Maurer ([42]) extended the set
of groups for which the equivalence holds to include groups G such that for all
p dividing |G| and greater than some bound B which is polynomial in log |G|,
either p—1 or p+1 is smooth with respect to B. Subsequently, Maurer and Wolf
([44]) further extended the set to include those G such that for all p dividing |G|
and greater than some bound B which is polynomial in log |G|, either p — 1 or
p + 1 is smooth or ¢, (p) is smooth for some n, where ¢, is the nth cyclotomic
polynomial and n is bounded.



The idea introduced by Maurer and then used by Maurer and Wolf is to
transport the discrete logarithm problem in a goup G to an auxiliary group H
which has smooth order but which requires the DH—oracle in order to perform
multiplication. The groups H that are introduced are one of two types, either
the group of points of an elliptic curve over a finite field or the subgroup of the
multiplicative group of a finite field. The equivalence is obtained by now using a
discrete logarithm algorithm in H, known as the Silver-Pohlig-Hellman method
(see [43]), which takes advantage of the smoothness of |H]|.

2.2 Public key

The idea of a public key cryptosystem is that anybody is able to send an en-
crypted message m to a participant A by using a publicly known encryption key
ea while only A can decrypt m with the aid of his or her secret private decryption
key da. For the sake of security against opponents, it must be computationally
infeasible to derive da from ea.

The idea of public key cryptography first appeared in an article of Diffie and
Hellman [22] in 1976. Soon thereafter, Rivest, Shamir, and Adleman invented the
well-known RSA public-key cryptosystem [57], which depends for its security on
the difficulty of the integer factorization problem. In 1985, ElGamal published
a public key system based on the difficulty of the discrete logarithm problem in
the multiplicative group of a prime field [25]. For the description, we follow [65].

Suppose p is a prime such that the discrete logarithm problem in (Z/pZ)*
is intractible, and let a be a generator of Z/pZ". To begin with, A chooses
a secret key da € Z and publishes a?s Mod p, an integer we will call es. In
order to encrypt a message m which is to be read by A, one chooses a random
k€ Z/(p—1)Z and computes the pair (y1,y2), where

y1=a*Modp  y» =mek Mod p.

Now since
Y2 meﬁ makda _ d
da = ghda — gkda 0RO D

A can decrypt the message by evaluating the inverse of y; mod p and then com-
puting y2(y; )% Mod p.

2.3 Digital signatures

An important part of cryptography is the development of secure signature schemes.
The problem, in this case, is to find a way to sign a message so that the sig-
nature cannot be forged and can be verified by anyone. To prevent forging, the
difficulty of the discrete logarithm problem can be used. For verification, dis-
crete exponentiation (powering by using repeated squaring) can be employed. In
December 1994, The National Institute of Standards and Technology adopted a
modification of the ElGamal Signature Scheme [25] known as the Digital Signa-
ture Standard (DSS) [49]. We follow the description of the DSS in [65].



Let p be a 512-bit prime such that the discrete log problem in (Z/pZ)* is
intractible, ¢ a 160-bit prime with g|(p — 1), and a an element of order ¢ in
(Z/pZ)*. Assume person A has a secret key da. Let ea = a?s Mod p. As in the
previous scheme, A publishes ex. Whenever signing a message m, A randomly
determines a parameter k € (Z/qZ) and computes a pair (v,9) € Z/qZ x Z[qZ
according to

v = (a¥ Mod p) Mod q, & = (m + davy)k™"! Mod q.

This pair is then appended to the message. Note that a has order ¢ mod p, so
a* mod p is well-defined. Anyone can now verify the signature (vy, d) by checking
whether
mé~1 6! _
(a -ex’ Mod p) Mod ¢q = 7.

3 Algorithms for finite fields

Let ¢ = p”, where p is a prime number and n a positive integer. Let IF; be
the field of ¢ elements and assume that ¢ generates IF,*. Let b be a second
element in IF,*. There are various algorithms for computing log, b which have an
exponential running time. These include Shank’s baby step/giant step method,
Pollard’s rho method, and the Silver-Pohlig-Hellman method, all of which are
described in [37]. Here we pause only to comment on the success of the last of
these in solving logarithms in a prime field. With the practical improvements
of Pollard [55] and Brent [10], the Silver-Pohlig-Hellman algorithm was used
compute log; 11 in IF,,, where

p = 310819381412191101419.

The solution
x = 294372123685385432716

was computed in 10718 CPU-minutes on a Sparc ELC workstation (approx. 7.5
days) [67]. The significance of this example lies in the fact that (p — 1)/2 is a
prime of 21 digits. The running time of the Silver-Pohlig-Hellman method for a
field IF, depends on the largest prime factor of ¢ — 1. The algorithm, therefore,
is most effective when the prime factors of ¢ — 1 are small. In this case, we see
its practicality in a prime field even when the cardinality of the multiplicative
group has a factor of 21 digits.

Most recent work on the discrete logarithm problem for finite fields has fo-
cused on analyzing, modifying, and implementing various forms of the index
calculus method. For the remainder of this section, we concentrate on this ap-
proach. The reader will find a general description of the index calculus method
in just about any survey article on discrete logarithms, including [37],[43],[51],
and [52]. The reader will also find in these works the names of the many math-
ematicians who discovered this method, the earliest being Kraitchik who wrote
about it in the 1920’s ([33]). We begin with a brief description of the method



in the simplest setting, a prime field, and then give a more abstract formulation
which will lend itself to the various algorithms that are discussed subsequently.

Let p be a prime and assume we are interested in computing log, bin (Z /pZ)*.
We take as representatives for Z /pZ the set F' = {0,1,...,p—1}. Let S be the
set of primes in F' which are less than or equal to some given bound. The first
step of the algorithm is to find integers k such that ¢* is represented by an ele-
ment of F which factors over S. In this way we obtain relations in Z /pZ of the

sort
sES

where s in this case denotes the coset in Z/pZ represented by s. Each such
equation yields a linear equation of the form

k= Zes log, s.

sES

We also search for a single exponent ¢ such that t°b factors over S. This relation
gives an equation of the sort

c+log, b= Zes log, s.
sES

Once we have accumulated enough relations so that the linear sytstem has full
rank, we can use linear algebra mod p — 1 to solve for the logarithms of all the
primes in S and, more importantly, for log, b.

Now let R be a Dedekind domain with field of fractions K. Recall that every
ideal in R factors uniquely into prime ideals. Assume that there exists a ring
homomorphism ¢ : R — IF,. Let S be a set of prime ideals of R and call an
element of R smooth if the ideal it generates factors over S. The set S is called
the factor base. Let 7 and 3 be such that ¢(7) =t and ¢(8) = b and assume
is smooth. The first step in our algorithm is to find many pairs (§,7) € R x R
such that
i) ¢(6) =o(7)

ii) 4 factors into a power of 7 and a smooth element
iii) «y is smooth.
Assume the factorizations of (§) and () are given by

S| S|
@ =@ I[P and )=]7"
7j=1 7j=1
where the P; are the prime ideals in S. Then for each pair, we obtain a vector vs =
(v;j) where j =0,...,|S| and a vector w, = (w;) where this time j =1,...,|S|.
Additionally we define a vector v; = (1,0,...,0) and a vector w; containing the
exponents in the factorization

S|

8) =11 7"



In the second stage of the algorithm we use linear algebra modulo (¢ —1) to find
integers e(s ,) and a single integer e so that

evy + z e@i,y)vs =0mod (¢ —1) and wp + Z e(s,y)Wy = 0mod (g —1).

Let p=71¢[[ 6% and let v = B[4 . Then

bg(u) = bteg(J [ 6°) = tbp([ [ o) = t°9(w).

Furthermore, p and v are elements in the set
V ={a € K*|(q—1)|ordpa forallprimeideals P C R}.

Though V' contains the set of (¢ — 1)st powers in K*, which we will denote by
K*97! it is not in general equal to K*?!. Assume for the moment, however,
that p and v are (¢ — 1)st powers. Since the (¢ — 1)st power of any element in
IF, is 1, we see immediately that b = ¢t® and our problem is solved.

As is evident, one issue that arises in analyzing this algorithm is the discrep-
ancy between V and K*?7!. Indeed, the quotient V/K*?~! can be thought of
as an obstruction group. It is easily seen to be a Z/(q — 1)Z module, and for
the R we consider below, it is finitely generated. When its only elements are the
images of roots of unity in V', in which case its rank is 1, this obstruction group
poses little difficulty. When it has larger rank, some more severe modifications
are necessary.

3.1 Rigorous subexponential algorithms

Since a finite field IF; can be represented as either a quotient of Z or a quotient
of IF,[X], these two rings make natural choices for R. Indeed, the map ¢ : R —
IF, is then simply the quotient map. Since Z and IF,[X] are both principal
ideal domains with few units, the index calculus method takes on a particularly
simple form with only a small obstruction group. Moreover, results about smooth
elements in these rings allow for a rigorous analysis of the algorithm.

We begin with the case that R = IF,[X] and assume that IF, is represented as
F,[X]/f(X), where f(X) is an irreducible polynomial of degree n. The elements
t and b, then, are cosets and we let 7 and 3 be representatives for them of
smallest degree. As stated, ¢ : R — IF, is the quotient map. Let S be the set
of ideals generated by an irreducible polynomial of degree less than or equal
to some bound B. Given an element g(X) € IF,[X], we denote by g(X) the
polynomial of smallest degree congruent to g(X) modulo f(X). The pairs then
that are tested for smoothness in the first stage of the algorithm are (7%, 7%) for
randomly chosen values of k € {1,2,...,¢—1}. Notice that the vectors vs in this
case have only one non-zero entry. Since (3 is not necessarily smooth, an extra
search is done to find s so that 7% is smooth. In this case, we let the vector
wyp, contain the exponents occuring in the factorization of (7°3). As a result, the
algorithm produces log, t°b, from which log, b can be deduced. Since IF,[X] is a




principal ideal domain, the obstruction group V/K*?~! = IF,[X]*. But the only
units in IF,[X] are the non-zero elements of the base field. We conclude that our
algorithm produces a relation of the sort b = at® for a € IF,*. Since computing
log, a is an easy matter when p is small, our problem is solved in this case. In
what follows we will refer to this algorithm as the IC-PR algorithm, the letters
standing for Index Calculus - Polynomial Ring.

The running time of the IC-PR algorithm depends on the probability that
a polynomial of degree < m is B-smooth. In 1985, Odlyzko ([51]) determined
this probability in the case that p = 2. As a result, Pomerance ([56]) was able
to prove in 1987 that the algorithm, in the case that ¢ is a power of 2, has an
expected running time of L,[1/2;v/2 + o(1)], where the limit implicit in the o(1)
is for ¢ — 00. Since then Odlyzko’s arguments have been extended and modified.
In 1992 Lovorn-Bender ([39]) used the same approach as Odlyzko to determine
an asymptotic formula for the number of B-smooth polynomials of degree < n
in TF,[X], under the condition that n'/1%° < B < n%/190_ With this in hand,
she was able to prove that the IC-PR algorithm has an expected running time
of Ly[1/2;4/2 + o(1)], so long as logp < n® as ¢ — oc. Finally, Lovorn-Bender
and Pomerance ([41]) recently were able to extend this result and show that the
algorithm has an expected running time of L,[1/2;v/240(1)] so long as p < n°(™
for ¢ — co. Moreoever, they show that it is a subexponential algorithm under the
far weaker assumption that n — oo as ¢ — oo. Their improvements depend on a
result of Soundararajan ([64]) which gives the number of B-smooth polynomials
of degree < n for 2log’n < B < n and a result of their own giving a lower
bound for this quantity when B < n'/2.

Despite the breadth of Lovorn-Bender and Pomerance’s latest result, there
are many cases for which the IC-PR algorithm is not subexponential. In partic-
ular, if n is fixed as ¢ — oo a different approach is necessary. For n = 1, it is
best to let R = Z. We do not give the details here as there have not been any
recent developments in the analysis of this version of the index calculus method.
See [56] for Pomerance’s proof that this algorithm has an expected running time
of Ly[1/2;+/2 + o(1)].

In the case that n = 2, we encounter in the work of El Gamal ([26]) and
subsequently Lovorn-Bender ([39],[40]), a new choice for R, namely the ring of
integers of a quadratic extension of Q. We briefly describe the version of Lovorn-
Bender. Let R be the ring of integers of a quadratic imaginary field and assume
that p is inert in R. In other words, R/pR = IF,. Let ¢ : R — IF, be the
quotient map and let S be the set of prime ideals whose norm is prime and less
than or equal to some given bound. We find an integral basis {1, a} for R and
fix T = {a+ ba|a,be€ {0,...,p— 1}} as a set representatives for R/pR. For
any r € R we denote by 7 the element in T' congruent to r modulo p, and we
pick 7 and 8 from T so that ¢(7) =t and ¢(3) = b. At this point, the algorithm
proceeds in exactly the same way as the IC-PR algorithm, except that the linear
algebra is done modulo (¢ — 1)¥, where y is chosen so that

V' ={a € K*|(g—1)?|ordpa forall primeideals P C R}



satisfies V//K*?"' = R*. Tt is not hard to show that such a y exists and to
compute a bound for it. The obstruction group, then, only consists of R*, which
has cardinality at most 6 since R is an imaginary quadratic number ring. Such
an obstruction is easily handled.

Lovorn-Bender is able to prove that her algorithm has an expected running
time of L4[1/2;3/24 0(1)] for p — 0. To do so requires determining the proba-
bility that an element in T is smooth. In El Gamal’s work, this analysis is done
under the assumption of the Generalized Riemann Hypothesis. Lovorn-Bender
is able to avoid the GRH by randomizing her choice of R. The method involves
making a random choice from a small set of discriminants which are obtained
by means of multipliers. The idea is also used to avoid the GRH in the factoring
algorithm of [38].

3.2 Heuristic subexponential algorithms

In the last few years, various generalizations of the rigorous algorithms described
above have appeared. In all of them R is either taken to be an extension of IF,[X]
or an extension of Z. What is gained is a broader range of fields for which
the algorithms work and improved running times. What is lost is the rigorous
analysis.

We begin with an algorithm of Adleman and DeMarrais ([3]) which we call
the IC-NR algorithm. The letters reflect the fact that R is chosen to be a number
ring. Let r be the smallest prime congruent to 1 mod n such that the order of p
in (Z/rZ)* is prime to (r — 1)/n. Then r has the property that p is inert in the
unique subfield of degree n of Q({,), where (, is a primitive rth root of unity.
Let O be the ring of integers of this subfield. Then IF;, = O/pO. Let t; be the
trace of ¢, in O and let ta,...,t, be the conjugates of t; in O. Then {t;} is a
basis for O over Z and we can take as representatives for O/pQO the set

n
T:{Zajtj|0§aj Sp—].}.

j=1

Now let R = O and let ¢ : R — IF,; be the quotient map. Let S be the set of
prime ideals whose norm is divisible only by primes less than or equal to some
given bound. For any a € R, denote by @ the element in 7" which is congruent
to a mod p. Let 7 and B be elements of T such that ¢(7) = t and ¢(8) = b.
The rest of the algorithm is the same as the IC-PR algorithm, except that the
obstruction group is more serious, as the class group and the unit group of O
both contribute to the obstruction in potentially significant ways.

Adleman and DeMarrais handle this problem by introducing character signa-
tures. Let J be a prime ideal of O such that (O/J)* contains a cyclic subgroup
of order ¢ — 1. Let o be a generator of this subgroup. Then the character sig-
nature of an element v € O, with respect to the pair (J,0), is the exponent e
determined by the congruence

[(©/J)*] e
vy et =¢° mod J.



Notice that the values a character signature takes on are naturally seen to be in
Z/(q—1)Z. Notice also that if v is a (g—1)st power then its character signature is
0. Conversely, one might hope that if an element v € V has character signature 0
with respect to many ideals J then it is a (¢ — 1)st power. Indeed, if one assumes
independence of the character signatures, one can make a precise estimate as
to how many ideals are necessary to guarantee that v is a (¢ — 1)st power.
Assume then that this number is m and that py,..., p; are distinct character
signatures. By including the values pg () in the vector vs and pg(7y) in the vector
wy, where k = 1,...,m, we obtain after the linear algebra is performed elements
u and v which must be (g — 1)st powers because they are in V and have value
0 for sufficiently many character signatures. Of course, computing a character
signature in this case is not a trivial matter since the cardinality of the finite
field O/J is q or bigger. The trick here is to restrict to ideals J of degree one.
Then O/J is a prime field and the algorithm mentioned in the previous section
for n = 1 can be used.

The result is an algorithm with a conjectured expected running time of
L4[1/2;2 4 0(1)] so long as p > n as ¢ — co. The analysis depends on the GRH
as well as reasonable, though unproven, assumptions concerning the number of
smooth elements in T" and properties of character signatures. Nonetheless, when
this algorithm is combined with the IC-PR algorithm, we obtain the first exam-
ple of an algorithm with a conjectured running of L4[1/2;c¢ + o(1)] for ¢ = oo
without constraint.

Perhaps the most dramatic development in the last few years has been the
appearence of the generalized number field sieve (GNFS) and the function field
sieve (FFS), both of which have, under certain assumptions about ¢, a conjec-
tured expected running time of L,[1/3;¢ + o(1)] for ¢ — co and both of which
have been implemented for some special fields. The impetus for their discov-
ery was the development of the number field sieve factoring algorithm ([36]).
Indeed, soon after its appearence, Gordon ([29]) realized that the number field
sieve could be modified to compute discrete logarithms in prime fields. The cru-
cial idea is to let R be a number ring with an assortment of special properties
that diminish the size of the elements that are being tested for smoothness.

We describe first how to construct R in the number field case. Given g¢, let
O be the ring discussed in the IC-NR algorithm with O/pO = IF,. Assume that
f € O[X] is amonic, irreducible polynomial of degree d for which f(b) = 0 mod p
in O. Assume also that the constant term of f is smooth in O, with respect to
some bound B, in the sense of the IC-NR algorithm. Let 3 be a root of f and
let R = O[F]. Let K be the field of fractions of R and let A be the ring of
integers of K. Let P be the prime ideal of R generated by p and 8 — b. Then
R/P = TF, and we let ¢ : R — IF, be the quotient map. Let S be the set of
prime ideals in A whose norm is divisible only by primes less than or equal to B.
In this case, an element of R is smooth if it generates an ideal in A which factors
over S. Notice that ¢(3) = b and that § is smooth since its norm is the smooth
constant term of f. Let 7 € R be such that ¢(7) = ¢ and assume that 7 is also
smooth. In theory and practice, this assumption is not costly. The algorithm



now proceeds by using sieving techniques to find pairs of smooth elements of the
form (¢ — dB,c — db) with ¢,d € O. For each pair, we construct the associated
exponent vectors using the factorizations over S of the ideals these elements
generate. Since 7 is smooth we also include the pair (7,7) where the associated
vectors are obtained by considering in one case, the factorization of 7 as 7 - 1
and in the other, the factorization of (7) over S.

We now adjust the second stage of the algorithm to account for the fact
that, as with the IC-NR algorithm, the units and class group of R can create a
substantial obstruction group. If one computes enough character signatures for
each smooth pair found and includes these values in the linear algebra, then the
obstruction group can be killed. In the case that n = 1, however, this approach
is not a good one since computing the character signatures is harder than the
original problem. Even if this case could be overcome, the use of character signa-
tures for larger n does not seem practical. An alternative, however, is proposed
in [58] and [59].

Let ! be a prime dividing ¢ — 1 and let I" be the multiplicative subset of A
consisting of those elements with norm not divisible by I. Assume that [ does
not ramify in A. For each prime ideal £ lying above [ in A, let e, = |(A/£)*|.
Then for all v € T,

v¢=1modl,

where € is the least common multiple of the ¢,. We can, therefore, define maps
A;j : I' =+ IF; by means of the congruence

dn
¥ =1=>" X(7)bl mod 12,
j=1
where {by,...,bsn} is a basis for A over Z. These maps are logarithmic in the

sense that A;(vy') = A;(7) + A; (7). In fact, it is possible to formulate the map
A:I' = IF;" given by the A; as an approximation of the l-adic logarithm.

Returning to the GNFS, we make the following modifications. We only con-
sider ¢ — dB and ¢ — db whose norms are prime to /. We include in the exponent
vectors the values of the maps A;. Though there are only dn of these maps, one
can show that this is enough to handle the obstruction group. Finally, we do
the linear algebra modulo a suitable power of [ so as to kill the [-part of the
class group. The result is an algorithm which produces an integer e which does
not equal log, b but is congruent to this logarithm modulo /. However, since the
algorithm can be used for all large [ dividing ¢ — 1 and in fact can be modified
to compute log, v modulo prime powers dividing ¢ — 1, and since log, v modulo a
small prime power is easily computed using the Silver-Pohlig-Hellman method,
we have a way to compute log, v modulo all prime power factors of ¢ — 1. The
Chinese remainder theorem can now be used to find the logarithm.

The GNFS has a conjectured expected running time of L,[1/3;(64/9)'/3 +
o(1)], for ¢ = oo so long as for any € > 0, n < (log p)'/2~¢. This is conjecturely
the same time needed to factor an integer the size of g using the NFS factoring
algorithm. When the constraint on p and n is not met, the elements being tested



for smoothness are too large to preserve a running time of L4[1/3;¢ + o(1)] for
any constant c.

Though the GNFS is a very recent algorithm, a special case was alreadly de-
scribed by Coppersmith, Odlyzko, and Schroeppel in 1986. In fact, the Gaussian
integer method they present can be thought of as the number field sieve in the
case that n = 1 and R is taken to be a quadratic imaginary number ring.

We turn now to Adleman’s function field sieve ([2]). The description of this
algorithm is exactly the same as that of the GNFS except that the ring O is
replaced by the ring IF,[X], the ideal pO is replaced by a prime ideal gener-
ated by an irrecucible polynomial of degree n, the set S is the set of ideals in
A which divide the ideals in the factor base of the IC-PR algorithm, and the
method of handling the obstruction group is different. In this case, there are
non-archimedian valuations of K that do not correspond to prime ideals of A
but to the primes at infinity. These valuations can be thought of as extensions
of the degree map from IF,[X] — Z. By putting an extra condition on the
polynomial whose root generates R over IF,[X], Adleman forces A to have only
two primes at infinity. The values of these valuations are now included in the
exponent vectors and the linear algebra is done modulo a high enough power of
g — 1 so as to kill the class group, or more precisely the degree 0 part of the
Picard group. The result is that one obtains a relation of the sort b = at®, with
a € IF,*. The computation of log, a is then an extra step, but one which requires
comparatively little time.

The analysis of the running time for the FFS proceeds exactly as that of
the GNFS, producing the same conjectural expected value of L,[1/3; (64/9)'/3+
0(1)]. Soundararajan’s recent work on the probability that a polynomial is smooth
can be used to show that this running time heuristically holds so long as n >
(log p)? as ¢ — co. When this inequality does not hold, the set S, which must
contain at least one element for each linear polynomial in IF,[X] and conse-
quently has cardinality at least p, is too large. Thus, a gap exists between the
ranges of fields for which the FFS and GNFS yield a L,[1/3; ¢+ o(1)] algorithm
and the problem of finding an algorithm with such a conjectured running time
for all fields remains open. Nonetheless, the FFS and GNFS can be applied to
the fields in the gap. The result is an algorithm, which like the combination of
the IC-PR and IC-NR algorithms, has a conjectured expected running time of
Ly[1/2ic + o(1)].

Finally, we note that the algorithm of Coppersmith for computing logarithms
in IF, when ¢ = 2™, can be viewed as a special case of the FFS. We assume the
reader is familiar with the formulation of this algorithm in [18] and use P(z),
R(z), h, and k as Coppersmith does there. Now let f(z,y) = y* — R(z) and let
¢ Fo[z][y]/(f) — TFp[z]/(P(z)) be the ring homomorphism induced by sending
y — zP. The pairs that are checked for smoothness in this case of the FFS
are easily seen to be the same polynomials checked in Coppersmith’s method.
Similiarly, the algorithms of Semaev ([62]) can presumably be formulated as
particular cases of the FFS, though we have not done so. These methods are
designed to compute logarithms in IF,» when the order of p € (Z/(2n + 1)Z)*



equals n or 2n or when p™ —1 has a small factor not dividing p™ —1 for all m < n.
Like Coppersmith’s algorithm, they exploit special congruences in IF,[X].

4 TImplementations for finite fields

In this section we describe implementations of some of the heuristic algorithms
described in the previous section. We begin with the number field sieve (NFS),
which has been implemented to compute logarithms in prime fields, and then
consider the function field sieve (FFS) in the form Coppersmith’s algorithm for
fields of characteristic 2. Finally, we discuss separately the implementation of
the linear algebra that occurs in all forms of the index calculus method.

In this cases that we consider a prime field, we represent the field as Z /pZ
where p is prime and follow the convention of representing elements in the field
by their least non-negative residue mod p.

4.1 The NFS: the Algorithm of Coppersmith—Odlyzko—Schroeppel.

In 1991, Odlyzko and LaMacchia ([35]) implemented the Guassian integer method
designed by Coppersmith, Odlyzko and Schroeppel (COS). Their implementa-
tion was the first to show the weakness of a real cryptographic protocol. The
so—called Sun security option is built into the remote procedure call to authen-
ticate users and machines [66]. The system which is used to do this is based on
a combination of the Needham—Schroeder protocol [50], which uses DES, and a
public key cryptosystem which is a modification of the Diffie-Hellman key ex-
change protocol [22]. The latter system depends on the difficulty of computing
logarithms in (Z/pZ)*, where p is the 58—-digit prime

p = 5213619424271520371687014113170182341777563603680354416779.

In this case, (p—1)/2is prime. The computations for the system take place within
the subgroup of squares mod p generated by the element 3. The problem ad-
dressed in [53] was the challenge provided by M. Shannon of Sun Microsystems to
compute logs b, where b = 3088993657925229173047110405354521151032325819440498983565.

As we have seen, the COS-algorithm depends on the choice of a quadratic
imaginary number ring R. In the implementation for the Sun challenge, this ring
was obtained by adjoining to Z a root of the polynomial X? + 2. The factor base
consisted of 96321 primes in Z[/—2]. The pairs that were tested for smoothness
were of the form (V(c — dv/—2),cV — dT), where V and T are chosen so that
T? + 2V2 = 0mod p. Letting V! denote the inverse of ¥V mod p, we note
that the elements in the pair map to the same element under the quotient map
¢ : Z[V3] - Z[V3]/(p, VI - TV ).

In order to compute the logarithm of b, an integer k was found such that

b-3kzgmodp



where z and y are integers close to ,/p and divisible by relatively small primes
(bounded by 10'9). Then the logarithm of each prime factor r of z and y was
computed. According to the description in §3, in order to do this r should be
smooth. To get around this requirement, a search was done to find ¢ and d such
that r|(cV — dT) and both V(c — dy/-2) and h = (¢V — dT)/r are smooth.
Using the exponent vector associated to the resulting pair (V(c — dv/—2),rh),
and solving a slightly different linear system than the one described in §3, one
obtains the logarithm of r.

The search for smooth pairs, using sieving techniques, required approximately
1200 hours of computing time. For the linear algebra a variation of Gaussian
elimination called structured Gaussian elimination was used to obtain a dense
linear system which the Lanczos algorithm then solved in 44 hours ([34]). Both
computations were run on a Silicon Graphics 4D-220 having four processors each
rated at about 18 mips. In total, less than 2.5 mips-years were spent. According
to Odlyzko ([52]), if the computing time were increased by a factor of 800, which
would keep it well within the bounds of the amount of computing time used
for factoring integers, the implementation should succeed in computing discrete
logarithms in a field given by a prime of over 350 bits.

4.2 The NFS: general prime fields

The implementation [68] set a new record when on September 29, 1995 the
logarithms of 2,3,5,7,11,13,17,19,23, and 29 to the base 7 were all computed
in the field Z/pZ, where

p = 31081938120519680804196101011964261019661412191103091971180537759.

In this case p has 65 decimal digits and [ = % is prime.

For these computations, the implementation used a version of the number
field sieve in which the monic polynomial defining the number field is replaced
by a non-monic polynomial. Before describing it, we consider the monic case in
more detail. Let f(X) € Z[X] be a monic, irreducible polynomial with a root
B. Assume c and d are integers and note that a factorization in Z[f] of the ideal
(¢ — dp) is easily determined from the factorization of the norm of ¢ — dg. In
fact, if the norm factors as [[p{* then (¢ — dB) = [[ P{*, where P; is a degree
one prime ideal lying above p;. If one is careful to avoid those primes in Z[f]
which split in the full ring of integers A of Q(4), then the factorization of the
norm actually reveals the prime factorization of (¢ — d@) in A. As indicated in
§3, this factorization is what is needed to construct an exponent vector. Since
the norm of ¢ — df is given by the polynomial

N(c—dp) =d"f(c/d),

values can be checked for smoothness using a sieve. The trick in the non-monic
case is to make use of the the values d" f(c¢/d) again, even though £ is no longer
integral and these values no longer reveal the ideal factorization of ¢ — dg.



Assume now that f(X) = > 7 a; X" is in Z[X], with a, > 1, and assume
that f(X) has a root m mod p. Let 3 be a root of f(X) and notice that w = a,0
is a root of the corresponding monic polynomial g(z) = ™ + 37 (an)" ix'.
Let Ry = Z[w], let Ry = Z[3]NZ[3~!], and let A be the ring of integers of Q(w).
In this version of the number field sieve we search for pairs of smooth elements
in Ry of the form (a,(c — dB),a,(c — dm)) and then proceed as described in
§3, with the map ¢ being the quotient map from Ry — R;/(p,w — apm). By
smooth, however, we mean something a little different than before. To begin
with, we include in the factor base the primes dividing a,. Thus we need only
test ¢ — df and ¢ — dm for smoothness. Furthermore, we consider ¢ — dm as an
element of Z. In other words, we include in S, the rational primes less than or
equal to some given bound and look for ¢ — dm to factor over this set. Finally,
we call ¢ — df smooth if d" f(c/d) is divisible only by primes less than or equal
to a second bound B. As described in [15], the factorization of d" f(c/d) reveals
information about the Ry-module (Ra+ R23)/R2(c—df). In particular, it tells us,
the number of factors in a composition series of this module that are isomorphic
to Ry/P, where P ranges over the prime ideals of Ry of degree 1 lying over the
rational primes dividing d” f (¢/d). For those P for which P- A is prime in A and
for which |Ra/P)| is prime to a,, this number is exactly the exponent to which
P - A appears in the prime ideal factorization of (a,(c— df3)), considered now as
an ideal of A. Thus, if one constructs in a straightforward manner an exponent
vector for ¢ —df using the exponents appearing in the factorization of d" f(c/d),
and one makes some adjustments for the primes dividing a,, and the few primes
of R» that factor in A, one can proceed with the linear algebra.

For the computation under consideration, the polynomial defining the num-
ber field was

f(X)= —57969887 X*
—1040988700418 X3
—1599410033377 X2
+2467898905167 X
+2804774217242

There were 16954 prime ideals of A and 3000 rational primes in the factor
base. In particular, the factor base included those elements whose logarithm was
computed. This fact disposed of the need to find a smooth pre-image under ¢ of
each of these elements.

The sieving interval for the search to find smooth pairs (¢ —dj, ¢ —dm) with
m = 13277827521354825 was

—4000000 < ¢ < 4000000
1 < d < 500000.



The sieving procedure used the idle time of 130 workstations and took 5 y
116 d 15 h 36 m (mips). The computation was distributed among them with the
Library for Parallel Systems LiPS [63].

The solution of the 20442 x 19957 linear system mod / was done on a Paragon
machine at the KFA in Jilich/Germany in 38 hours on 50 nodes by using the
Lanczos implementation discussed below and in [20]. The solution of 2z mod 2
was easy to obtain by using the Silver-Pohlig-Hellman algorithm.

4.3 The NFS: special prime fields

The implementation [68] has also been used to compute the logarithms of 3,5, 11,
23,31,67,7351, and 11287 to the base 7 in Z/pZ, where

7397140 _ 736
=

This is the field presented by McCurley [43] in his challenge problem.

For a prime the size of p, the polynomial used to generate the number field for
the NFS should optimally have a root mod p of size p'/®. The polynomial used
in this case was f(X) = 739X°® — 5152, which does have such a root, namely 73°.
Notice that the special form of p is what allows for the construction of a suitable
polynomial with such small coefficients. Let § be a root of f(X), let Ry = Z[w]
where w = 7394, and let ¢ be the quotient map from Ry — R;/(p,w —739-730).
The algorithm now proceeds as described in the previous subsection. The small
size of the coefficients of f are clearly a great advantage, for the smaller the
values of d"f(c/d) are, the more likely that they are divisible by only small
primes.

For the computation of the logarithms listed above, a factor base containing
40,000 elements was used. As before, each element whose logarithm was com-
puted was in the factor base. As a result, there was no need to find smooth
pre-images under ¢ of these elements. The sieving interval for ¢ and d was

-15-10° < e < 15-10°
1<d<10°.

After using 110 mips years of idle time on 110 Sparc workstations, a sparse
matrix of size 40015 x 40000 was constructed. The solution of the system modulo
the 126—digit prime factor of p—1 was done on three Sparc 20 stations in a month
using the Lanczos algorithm [20].

There remains the McCurley challenge, namely to compute the logarithm to
the base 7 of

b =127402180119973946824269244334322849749382042586931621654557
735290322914679095998681860978813046595166455458144280588076
766033781.



Using the congruence
7% b= mod p

where

§=3-5-11-23-11287-10547587 - 2916781859 - 22761868782949840132373
-51337921071904669

t=31-67-7351-402869 - 2599909498829 - 3598631011739
-77731271923481246820848221,

we can reduce the problem to that of computing the logarithms of the relatively
small factors of s and ¢. Indeed, as we have seen, the logarithms of the smallest
factors have already been computed. In order to compute the logarithm of any
of the bigger prime factors by means of the number field sieve with R; given as
above, one must find a smooth element in R; which is mapped to that prime by
¢. No good method has yet been found to accomplish this. If one is willing to
give up the attractive polynomial f(X) = 739X° — 5152, then there is a method,
described in Gordon’s paper ([29]), to find an alternative polynomial which will
generate a suitable number ring. However, it is not yet feasible to pursue this
route for the primes listed here. The problem is that the coefficients of the
polynomials are too big. As a result, the factor base has to be increased in order
to find enough smooth pairs in the corresponding number ring. Unfortunately,
the size of the factor base then is too great for the available implementations
of linear algebra mod p — 1. We note that current NFS factoring efforts do, in
fact, use number rings given by polynomials with coefficients of the size we are
discussing. In this case, however, the linear algebra is done mod 2.

4.4 The FFS: Coppersmith’s IF;»—algorithm

Abandoning the general formulation of the function field sieve, we follow Cop-
persmith’s description of his algorithm in [18]. Let the finite field IFa» be repre-
sented as IFo[X]/(f(X)), where f(X) is an irreducible polynomial of the form
X" + f1(X). For the sake of convenience, the degree of f; is chosen as small
as possible. Let h and r be constants. The algorithm proceeds by searching for
polynomials u; (X) and uy(X) of degree di,dy ~ n'/? respectively, so that

wy = uy (X)X + uy(X) (1)

is smooth and w; (X)?", reduced modulo f(X), is also smooth. By setting r such
that 2" ~ n'/3, and h to the smallest integer above n2~", the degree of the
polynomials being tested for smoothness are of order n2/3.

In [28], Gordon and McCurley describe a sieving method they used to find
u1 (X) and us(X) such that wy (X) is smooth. Let g be an irreducible polynomial



in the factor base. A polynomial of the form (1) which is divisible by g can easily
be computed by choosing some polynomial u;(X) and setting u2(X) equal to
the residue of smallest degree of u; (X)X" modulo g. To find more multiples of
g of the form (1), one can now add g(X) - u3(X) to us, for every us of degree
at most ¢, where t is appropriately chosen that the generated wsy’s are still of
degree approximately n'/3. The crucial idea here is to enumerate all g(X)-u3(X)
without carrying out the multiplication. The us are represented by bit strings of
size t. A Gray code of dimension ¢ is an enumeration G;, 0 <4 < 2t — 1, of all
bit strings of size ¢t provided that G; and G;41 only differ by one bit. There is
a recursive and an iterative description of constructing Gray codes of arbitrary
dimension. By utilizing the fact that G; and G;; differ at bit (), where 1(7) is
the position of the lowest ‘1°—digit in the binary expansion of i, one can construct
a sequence of polynomials u3 ; simply by means of the equation

uz i1 (X) = usi(X) + g(X)- XD 0<i<2t 1.

Note that the latter multiplication can be obtained by a left shift of the repre-
sentation of g. We thus obtain an efficient way to find pairs u; (X)), u2(X) such
that u1 (X) X" +ua(X) is divisible by g. Using this method for all g in the factor
base produces the smooth polynomials we seek.

Gordon and McCurley have computed logarithms in the the factor base for
n € {227,313,401}. For n = 401, it took 111 hours on 1024 processors of an
nCUBE-2 to find the relations and 33 hours on 32 processors of an iPSC860 to
solve the 117164 x 58636 linear system. The linear algebra step was accomplished
by first reducing the size of the system via structured Gaussian elimination and
then applying a parallel version conjugate gradient method.

In the case n = 503, the sieving has been done. The resulting 361246 x 210871
system of linear congruences has not been solved modulo the largest prime factor
of 2503 — 1, which has 96 decimal digits.

4.5 Linear algebra

For discrete logarithm algorithms, the linear algebra step has always seemed to
be a serious bottleneck. In fact, in order to avoid difficulties in the linear algebra
step, the size of the factor based is generally chosen to be smaller than would be
optimal for the sieving step. For background on the linear algebra, we refer the
reader to [34], [43], [51].

Due to improvements in the sieving step, such as the large prime variations
described in [23], the weight (the number of non zero elements) of the matrices
that occur in the linear algebra stage has greatly increased in recent imple-
mentations. As a result, the systems are much more difficult to solve either
with structured Gaussian elimination ([34]) or with Krylow subspace algorithms
(Lanczos, conjugate gradient, or Wiedemann)([27]). Indeed, the complexity of
all these methods depends on both the dimension n and the weight w of the
system. More precisely, it is in O(n? 4+ w). The sensitivity to weight in the case
of structured Gaussian elimination is reflected in the fact that, in [34], a reduc-
tion in dimension of approximately 90% on systems with an average number of



15.5 entries per equation was achieved, whereas in the systems which arise from
NFS computations and which have an average number of approximately 390
entries per equation, a reduction in the dimension of only 50% can be achieved.
Ordinary Guassian elimination, in contrast, only depends on the dimension of
the system. Nonetheless, the practicability of a combination of structured Gauss
and ordinary Gaussian elimination suffers from enourmous space requirements.

Currently, our approach is to combine structured Gaussian elimination with
one of the Krylow subspace algorithms. By employing Gaussian elimination first,
we can decrease the dimension of the linear system, but due to the performed op-
erations the weight of the system increases. While the expected running time of
the Krylow subspace algorithms decreases we keep on doing structured Gaussian
elimination and then we solve the compactified system with a Krylow subspace
algorithm. We prefer the Lanczos algorithm to solve the compactified system be-
cause it is quite fast and has moderate space requirements. We give a description
of this method following [53].

Suppose we want to solve the sytem Az = w for a column n-vector z, where
A is a symmetric n X n matrix, and w is a given column n-vector. Let

wo =w, v = Awg

{v1,v1)
wr =1 — 57—
(wo,v1)
and then for ¢ > 1, define
Vi1 = Aw;
(Vig1,vit1) (Vit1,vi)
Wi41 = Vjg1 — w; — Wi—1
" o (wi,vipr) (wi1,v)

The algorithm stops when it finds a w; such that (w;, Aw;) = 0. This happens
for some j < n. If w; =0 then

j—1

z = Z {wi,w) w;

— (Wi, Vit1)

is a solution of the system. For more details, for example on how to deal with
non-symmetric matrices or self-conjugacy we refer to [53]. In every iteration i > 1
we have to compute the vector v;+1 = Aw; and 3 inner products. We were able
to reduce the number of inner products from 3 to 2 inner products per iteration,
by using the identity (vit1,v;) = (w;i,vi41) in the ith Lanczos iteration. For
details see [20]). This reduces not only the running time per iteration , it also
reduces the space requirements. The vector v; is no longer needed in the i-th
iteration.

There exist other efforts to reduce the weight of the systems that have to be
solved. In [21] a method is described to reduce the weight of relations that are
composed with the large prime variation. Slightly more sieving is also useful to
reduce the weight of the systems. By doing more sieving, you get relations which



are obtained by combining fewer partial relations (relations with up to 4 large
primes) and therefore the weight of the matrix is decreased. As an example
we list some data collected during the precomputation step of the McCurley
challenge [43]. We list the number of partial relations that are needed to build
the matrix. We counted this number at three different points during the sieving
step. Even at the first point we had twice as many relations as were needed to
build the matrix. We also list the maximum number of partial relations that
were needed to compose an equation.

[point | # partial relations | maximum |

I 1664276 78
I 1113781 48
II1 567 592 23

In order to get a rough estimate on how long it would take to solve systems
that arise from a discrete logarithm problem modulo an arbitrary 129 digit prime,
we did some calculations based on our experience. We assume that in all cases
the average weight per equation is &~ 400 and that 15 solutions are needed. In
the first column the dimension of the system is listed and the second column
holds the expected running time on 136 nodes of the Paragon machine in Jiilich.

| dimension | running time |
125000 21 days
250000 81 days
500000 335 days
1000000 1250 days

5 Class groups

We discuss some recent results concerning the computation of discrete logarithms
in the class group of an imaginary quadratic order. We do not consider class
groups in other settings. For recent work on computing discrete logarithms in
the class group of a function field we refer the reader to [48]. For a discussion
of a Diffie-Hellman type protocol which depends for its security in part on the
difficulty of computing discrete logarithms in class groups of general number
rings we refer the reader to [13].

Let C1 be the class group of an imaginary quadratic order of discriminant D.
We begin by reporting that a deterministic version of Shank’s baby step/giant
step algorithm has been implemented which is able to compute logarithms in the
case that D = —4(10?° +1) in about 100 seconds on a Sparc Station 20 [11]. The
modification of Shank’s method used for this computation allows one to prescribe
the number of baby steps. This has a significant advantage in class groups,
because in this case the order of a group element is not known in general. Instead
of taking the group order as an upper bound, Jacobson and Teske experiment
with smaller values and obtain running times, which are considerably better.



We turn now to a subexponential algorithm for discrete logarithms in C'L
which makes use of the algorithm of Hafner and McCurley [30] for computing the
structure of C'L. This algorithm uses the index calculus method to find integers
mi,..., Mg, where m;|m;;q for 1 <4 < k — 1, such that

Cl=2Z/mZx - x Z]|mpZ,

The algorithm depends on the correspondence between ideals of quadratic orders
and quadratic forms which is described in Theorem 5.24 of [17]. Indeed, all
computations in the class group are done with forms. To begin with a set S of
“small” prime forms is found. The set S is taken sufficiently large so that, if
the Generalized Riemann Hypothesis (GRH) is true, the elements of S generate
CL (see [5]). The algorithm proceeds to look for powers of prime forms in S
whose corresponding reduced form factors over S. When this occurs one obtains
arelation in the class group. The factorization over S of the forms in this relation
gives an exponent vector. Taken together, these vectors give a matrix A whose
determinant is a multiple of the class number. Let A* be a lower bound for the
class number obtained by computing finitely many terms of the analytic class
number formula ([61]). When det A < 2h*, one has the correct class number.
In this case, the Smith-Normal-Form of A reveals the group structure of CI. In
fact, one has enough information to obtain generators 7i,...,7v; for the cyclic
components of C'L, as products of powers of the original prime forms of S. The
algorithm now to compute log, b proceeeds by expressing ¢ and b as products
over S and using the information produced by the Hafner-McCurley algorithm
to transform these products into products over the generators -y;. At this point
the original discrete logarithm problem is easily reduced to computing linear
congruences mod |{7;)| for all i. We refer the reader to [12] for the details as well
as the analysis that shows that once the algorithm of Hafner and McCurley is
complete, one can compute a logarithm in expected time Lp[1/2;1/2+ o(1)] for
D — 0. The algorithm of Hafner and McCurley is also subexponential, with an
expected running time of Lp[1/2;v/2 + o(1)).

The algorithm just described had been implemented. The largest discrimi-
nant for which logarithms were computed was 4-227, which has 40 decimal digits.
The computation of the class group took 511978 seconds. The computation of a
particular discrete logarithm took only 114 seconds on a Sun 4/60 Sparc Station
1.

6 Open questions

The index calculus has had remarkable success in computing discrete logarithms
in finite fields. It has also been modified to work in some other settings. In this
section we present some unsolved problems concerning both the index calculus
method and the discrete logarithm problem more generally. Many of the ques-
tions we give are modifications of those on McCurley’s list of open questions in
[43]. For additional problems, about which we had nothing new to add, we refer
the reader to this list.



- Can the equivalence of the discrete logarithm problem and the Diffie-
Hellman problem be shown for those primes not covered by the the work de-
scribed in §2.17 In particular, can the result of §2.1 be extended?

- Can one find an algorithm which has a running time of L,[1/3;¢ + o(1)],
where ¢ is a constant and ¢ — oo with no conditions on p and n? In particular,
can one fill the gap that presently exists between the number field sieve and the
function field sieve? At present the gap, roughly speaking, consists of those pairs
p,n such that (logp)'/? < n < (logp)?. For more details, see [59).

- Can one prove the running times conjectured for the heuristic algorithms
described in this paper?

- Is there a practical version of the number field sieve which can take advan-
tage of primes of the form ¢ — s, where r and e are small? We refer the reader
to [36] for a discussion of the effectiveness of the number field sieve for factoring
integers of this form. More specifically, can the number ring described in §4.3 be
used to solve the McCurley challenge?

- Can one improve the current methods for solving a system of linear equa-
tions modulo a large prime. In particular, is there an algorithm for which the
work can be cheaply distributed over a cluster of workstations?

- Can one find a subexponential discrete logarithm algorithm for IF, whose
running time does not depend on p but on the largest prime factor of p — 1.
Such an algorithm might be useful for breaking systems such as the DSS scheme
which uses a subgroup of size 160 digits in a field of size 512 digits.

- Is there a subexponential algorithm for computing discrete logarithms in
the group of points of an elliptic curve over a finite field? In [46], Menezes,
Okamoto, and Vanstone show how to use the Weil pairing to reduce the discrete
logarithm problem on an elliptic curve over a finite field to the same problem
in an extension of the finite field. In the cases that the degree of this extension
is sufficiently small, their reduction yields a subexponential algorithm for com-
puting discrete logarithms on the curve. Recently, Balasubramanian and Koblitz
([6]) have shown that it is very unlikely this approach will yield a subexponential
algorithm for a randomly chosen curve suitable for cryptography.

- Are there other groups which, like the group of points on an elliptic curve,
are easy to compute in and for which the discrete logarithm problem is appar-
ently difficult? In this regard, we note that there is a subexponential algorithm
for computing logarithms in the Jacobian of a hyperelliptic curve over a finite
field, provided its genus is large enough ([4]).
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