Computing
Discrete Logarithms
with the
General Number Field Sieve

Damian Weber

FB Informatik
Universitdat des Saarlandes
Postfach 151150
66041 Saarbriicken
Germany
e-mail:dweber@cs.uni-sb.de

Abstract. The difficulty in solving the discrete logarithm problem is of
extreme cryptographic importance since it is widely used in signature
schemes, message encryption, key exchange, authentication and so on
([15], [17], [21], [29] etc.). The General Number Field Sieve (GNFS) is
the asymptotically fastest known method to compute discrete logs mod
p [18]. With the first implementation of the GNFS for discrete logs by
using Schirokauer’s improvement [27] we were able to show its practica-
bility [31].

In this report we write about a new record in computing discrete loga-
rithms mod p and some experimental data collected while finishing the
precomputation step for breaking K. McCurley’s 129—digit challenge [10].

1 Introduction

Let p be a prime number and T} (-) be the cyclic multiplicative group of the
prime field of p elements, which has order p — 1. Let a € TF}.

In the case of b € (a), the multiplicative subgroup generated by a, there exist
infinitely many 2 € INg such that

a®*=b (1)

holds in TF;. We call the minimal 2 € INy satisfying (1) the discrete logarithm of
b to the base a.
By L,[v, 6] we mean the commonly used expression

Ly[v, 6] = exp((6 + o(1))(log p)” - (log log p)*~").

The adaption of the General Number Field Sieve (GNFS) to the discrete log
problem was shown by Gordon [18] in 1992 with a conjectured running time

Lpl3, 3%]. This was improved by Schirokauer [27] in 1993 achieving an expected
running time of L,[%, (%)%].

At Eurocrypt 1995 we presented the first practical experiments with the
GNFS for discrete logarithms, including a computation of discrete logs of a
prime p having 40 decimal digits, where p — 1 had a 38-digit prime factor [31].

On September 29, 1995, we achieved a new record with a 65—digit p, with
”%1 prime. Furthermore on March 4, 1996, we were able to compute logarithms
of factor base elements in the prime field given by the challenge of K. McCurley,
which he stated in 1990 in his overview paper [10]. Some practical improve-
ments were necessary to perform the large prime variation as well as to compute
individual logarithms.

2 Sketch of the Algorithm

Let a, b as in (1), ¢ € IN be a prime divisor of p — 1. We determine the discrete
logarithm z of b to the base a modulo ¢. If we are able to find s,t € Z, with ¢
coprime to g satisfying the property

a® bt = w!? (2)

for some w €]F;, then we can compute x mod q. This is because substituting
b = a® mod p leads to
= —st"! mod q. (3)

So the task is to construct a g-th power in IF}, written as a nontrivial product
of powers of a and b.

With the GNFS we construct a ¢g—th power in a number ring, the homomorphic
image of which is a g-th power in IF}).

To generate this number ring, we choose an irreducible polynomial

f(X):aan+an—1Xn_1+---+(11X+a0. (4)

Furthermore, we choose an integer m with f(m) = 0 mod p and a rational
factorbase FBywith primes € Z at most some B € Z.

We will compute in the number field Q(«), where @ € C a root of f. The
ring of integers of Q(a) is denoted by O. We choose an algebraic factor base
FBy consisting of all the first degree prime ideals with a norm at most some
B; € Z. Because of f(m) =0 mod p, the map

¢ :Zlo) — Z/pZ
ar— m+pZ

is a ring homomorphism.

We call | € Z t—smooth for t € Z, if all prime divisors of [are at most ¢.

We identify IF, with Z/pZ and for a € IF,, we let ¥(a) be the smallest non—
negative integer a’, such that a = a’ + pZ.

The sieving step determines a set S of pairs (¢,d) with the following three
properties:

— |S| > |FBi| + |FBz| +n
— ¢+ dm is By-smooth for every (¢,d) € S
— N(c+ da) is By—smooth for every (c,d) € S.

In the linear algebra step over IF,, for every (c,d) € S, the Lanczos algorithm
determines exponents e, 4, such that

— [Ig(c+ dm)®¢ is only divisible by v¥(a) and ¢(b) and

— [Ig(c+ da)e=¢ is a g-th power in Z[a].

After having accomplished this, we achieve congruence (2) via

¢(a)s¢(b)t = H(c + dm)ec,d
= H o(c + da)e?

= (07
=d? mod p

for some 6 € Z[a] with ¢(d) = d. Details about the sieving step are to be found
in [19, 32)].

The large prime variation, known from the GNFS for factoring, is a standard
method to improve the running time in practice [19]. In the current implementa-
tion, four large primes are used, therefore we used integers L1y > B; and Ly > Bs
as rational and algebraic large prime bounds respectively. Relations containing
at least one large prime are called partial relations.

3 Constructing a Polynomial

As described above, there is need to construct a polynomial f(X) € Z[X] of the
form (4) having certain properties. From [27] we know the following conditions:

— f is irreducible

— f is monic

— f(m) =0 mod p,

— the constant term of f is a Bo—smooth integer,

— ¢ does not ramify in O for each prime factor q of p— 1 we want to apply the
algorithm to.

Let f be given as in (4) and let « be a root of f. We want to construct
an algebraic integer, which generates the same field as « over Q. The way to
achieve this is already standard when factoring integers with the GNFS [19]. Let

g(X) = f(%)aﬁfl, then there exists w € Q(a) with g(w) = 0 and a - a, = w.
As in the case of factoring integers with the GNFS, requiring f to be monic
is not really necessary if one uses the identity % = ¢+ da when the use
of an algebraic integer is required. Because of g being monic, w is an algebraic
integer. Furthermore, there is need to get the true decomposition into prime
ideals of O for each anc + dw. We have more freedom in the case of factoring
with the GNFS because of the use of arbitrary many quadratic characters there
[26], which were discovered by Adleman [1]. The decomposition of the primes of
Z into prime ideals of O is obtained by finding roots of f mod r, where r is a
prime not dividing the index [O : Z[w]]; see for example [8, Th. 4.8.13].

To recognize index divisors 7, we search for quadratic divisors of the discri-
minant of f and apply the Dedekind test to them. The common approach to get
polynomials representing p is to compute the m-adic representation of p for seve-
ral thousand random m’s in the interval [p#l ,p7]. Note that for m € [%p% ,pn]
you end up with a monic polynomial.

In order to achieve small coefficients, for each m—adic representation of p, we
perform an LLL-reduction on the coeflicient vectors [20].

Avoiding index divisors restricts the choice of f considerably, but surpris-
ingly this does not prevent us from finding polynomials which lead to elements
with small norms. In the following tabular, we list experimental data concerning
discrete log problems in IF,, where p has 50, 65 and 75 decimal digits. Here we
have examined 4000 polynomials for each p.

|digits| poly-type |degree|r?|disc|good| bad| norm (all) [norm (good)|

50 [non—monic 3| 3844| 237|3763|4.18319e+24|4.94237e+24
50 [non—monic 4| 3944| 123|3877|2.20359e+28|7.17503e+28
50 [non—monic 5| 3927| 157|3843|5.11884e+32|1.04916e+33
50| monic 3| 23901 2650|1350 8.06197e+29|8.06197e+29
50| monic 4| 2555|3024| 976| 3.2589e+31|3.38198e+31
50| monic 5| 2060|2902|1098|6.60776e+34|6.60776e+34
65 [non—monic 3| 3922| 120|3880(9.86409e+28|4.28112e+29
65 [non—monic 4] 3920| 143|3857|1.25294e+31| 5.5884e+31
65 [non—monic 5| 3941 123|3877|9.01888e+34|4.38399%e+35
65| monic 3| 2915 2391|1609|1.24398e+35| 1.2686e+35
65| monic 4| 2551 2850|1150|6.70848e+34|6.70848e+34
65| monic 5| 2427|2747|1253|1.35132e+4-38|1.35654e+4-38
75 |non—monic 3| 3922| 134|3866(2.26212e+31|5.30916e+31
75 |non—monic 4| 3912| 1463854 |1.28099e+33|6.30742e+33
75 |non—monic 5| 3915| 165|3835|5.69116e+36|1.07349e+4-37
75| monic 3| 25401 2432|1568 |1.88293e+38|1.88293e+38
75| monic 4| 2560 2867|1133 |3.12151e+37|3.12151e+37
75| monic 5| 2396|2788(1212|1.29024e+40|1.29417e+40

The column poly-type contains the information, whether only monic or non—

monic polynomials are considered. The third column lists the degree of the poly-

nomials tested. The next column reports the number of polynomials having
square discriminant divisors below the factor base bound. After testing with the
Dedekind-criterion, which of the square discriminant divisors are index divisors,
we get the number of good polynomials. The others are called bad in the sense,
that they cannot be used without having a more time-consuming procedure
to recognize the correct exponents in the prime ideal factorization of a,c + dw
corresponding to (c,d) € S. As the tabular above shows, the norms are merely
slight worse as if the irreducible polynomials could be arbitrary chosen.

4 Constructing the Relation Matrix

The rows of the matrix consist of the exponents of FB;—elements with respect
to ¢ 4+ dm, the valuations of the FBs—prime—ideals with respect to ¢ + da, the
approximations of the g—adic logarithms of a, ¢+ dw and the exponent of a,,. As
we use large prime relations as described in [32], which we have already general-
ized to the use of four large primes, we need some utility functions. The relations
containing one or more large primes have to be combined to full relations. In
the case of factoring integers, this is done via a graph algorithm ([19], [32]). But
there are cases which cannot be used in the NF'S for discrete log as shown in the
following example.

Ezxample. Assume we have three partial relations and the exponents of the
three large primes ¢, gz, g3 are as follows.

Element a1 g2 g3
a1 + bia 110
as + boa 011
a3 + bza 101

Computing modulo 2 as in the factoring case, we can multiply the three re-
lations and get three large prime squares. But when computing modulo ¢ as
in the discrete log case, this does not suffice; in fact the determinant is 2 which
is Z 0 mod q for ¢ > 2. But in many other cases, the determinant is 0, even in Z.

In the case of the 65—digit—prime, we have 20147 “factoring”—cycles of length
< 42 and could combine 19580; that is 97.2%. A similar behaviour we noticed
with the McCurley challenge: 37059 cycles with length < 36, and 36840 com-
bined; that is 99.4%. To find the dependencies over Z, we use a very practical
method, adopted from the structured Gauss algorithm.

5 Individual Logarithms

For the index calculus algorithms, it is required to reduce the general task of
a® = b to several problems
a® =s,

with 9(s) small. In the Number Field Sieve algorithm the term small means
P(s) < p=, n the degree of the number field. In the case of finding a relation of
the form

¢+ dm = h -¢(s) mod p,

where N(c + da) is Ba—smooth and h is B;—smooth, we are done.

This is accomplished via a procedure similar to the lattice sieve algorithm
[24] and analogous to finding the special relations in [22]. The method we use is
as follows. First we find two linear combinations of m and ¥(s)

dm +y(s)=ce Z,

dm+y'v(s)=c e Z,

where ¢,d,c,d',y,y" < \/¥(s). This is done by using the extended Euclidean
algorithm. Set r := ¢ —dm, ' := ¢ —d'm, 8 = ¢c—da, ' := ¢ — d'a. Since
¥(s)| ged(r,r'), we can build linear combinations R(z,z2') := zr + 2'r' € Z for
small z, 2" € Z. Note that R(z,z') =0 mod 9(s) and because of the linearity of
R, we can use a sieve here. Let v € FB1 be a prime of the rational factor base,
for fixed 2’ the prime v divides R(z, 2') for

zl,r.l

mod v.

zZ =

Exactly the same happens to the prime ideals of the algebraic factor base FBs.
We want to decompose the principal ideals I(z, 2') := (28+2'8"). Let P be a first
degree prime ideal with N(P) = v corresponding to the root cp of f modulo v.
So P divides I(z,2') for

¢ —cpd

= -2z ——— mod v.
z zc_CPdmov

The size of R(z,2') leads to elements 4™ with ¢,d < /5; so R(z,2) <

HT;”. Concerning the size of the norms, we have

NI(z,2") = Zajcjd"*j <m-s%.
=0

6 Computing the Final Result

We describe the computation of the final result modulo ¢, which is a large prime
factor of p — 1 by using multiple solutions from the Lanczos algorithm. So the
whole computation takes place in the finite field IFy, which we denote by K.
Let m be the number of total cycles, i.e. the number of rows of the relation
matrix A, r be the number of primes we want to compute the discrete log
of. Furthermore, let s be the number of columns with heavy weight, say more
than 90 % of the entries are non-zero. Note that s > n, because the p-adic log

columns are heavy. Then we define the number of the rest of the columns as
t:=|FBR|+|FBA|+n+1—-s5—r.
Then A has the form
A — (AI|AII|AIII)
with A’ € Kmxr’ A e Kth, Al ¢ gKmXs,
We are interested in r — 1 solutions of

IE(A”|AI”) — OT (5)

in K.
The Lanczos algorithm computes s + r — 1 solutions of zA” = 0T, which we
denote as vectors s; := (8;1,...,8im), for 1 <i<s+r—1.Let S € K*tr—1xm

be the matrix consisting of the s;.
We compute B = SA" € K*+7=1%5 and r — 1 solutions of

zB =0T
of the form z; := (%1, ..., % s4r—1), which we write as a matrix X € K7 1xs+r—1,
Then the rows of XS € K" ~1X™ are solutions to the original equation (5):
XSA" =X0=0
XSA" =XB=0
We now construct linear combinations X SA' = L € K" 1*7. For every row
iof L, (1 <i<r—1), we have
pll"lplg2 .- -pl;'* =d] mod p

for some d; €]F;';.

Therefore

li1logpr + ...+ lirlogp, = 0 mod ¢

l—11logpi +...+1l—1,logp, = 0 mod ¢
and we need one solution to

Y1
Y2
Ly =0 mod g, y= .
Yr
Now choose a generator of]F;a,mong the p;, 1 < j <, say p; and define
Y1
L1 Y3
y = —y = .
Yk

!

Yr

We end up with

log,, pj =y;modg, 1<j<r yp=1

7 A 65—digit Problem

We now give details concerning the new record in solving a discrete log problem in
a prime field IF,, achieved on September 29, 1995 at the Department of Computer
Science in Saarbriicken. The prime number

p = 31081938120519680804196101011964261019661412191103091971180537759
had 65 decimal digits. We solved
7 = b mod p,
for b € {2,3,5,11,13,17,19, 23, 29}. The prime factorization of p — 1 is
2 - 15540969060259840402098050505982130509830706095551545985590268879.
The polynomial defining the number field was

f(X)= —57969887 X*
—1040988700418 X3
—1599410033377 X2
+2467898905167 X
+2804774217242

The primes of the rational factor base were the primes of Z less than 27450. The
primes of the algebraic factor base were the first degree prime ideals with norm
at most 187951, achieving factor base sizes of 3000 and 16954 respectively.

Let a be a root of f. Then the sieving interval for ¢ + dm, ¢ + da was chosen as
follows

—4000000 < ¢ < 4000000
1 < d < 500000.

The sieving procedure used the idle time of 130 workstations and took 5 y 116
d 15 h 36 m (mips) totally. The computation was distributed among them with
the Library for Parallel Systems (LiPS), which was developed by our research
group [28].

The solution of the 20442 x 19957 linear system mod g was done on a Paragon
machine at the KFA in Jiilich/Germany within 38 hours on 50 nodes by using a
Lanczos implementation of Th. Denny [12].

The solution of £ mod 2 was easy to obtain by using the Pohlig-Hellman
algorithm.

The final step was Chinese remaindering and determined z mod 2¢q with the
result

log, 2 = 12947465376923824724957499951503053332437571430268512704320339344
log; 3 = 22080187724931255875760876853515374478171170414218024970175409792
log, 5 = 9020360122054471637752764322421325610990892645529499177414056196
log, 11 = 9945551073244673320177388140562285016902916888328194474544106942
log; 13 = 15156730731943267081963372032905052327723905195485355154769047594
log, 17 = 8152659639161629852616660237224454396691805969032182443520670007
log; 19 = 8429438942722042183611304520083018385242987760831227887869827458
log; 23 = 29153020481930701437148309607402611581505734463034646141828747593
log, 29 = 22997906266006136529682973437413418001682127605800489536168728807

8 Precomputation of the McCurley—Challenge

Using GNFS, we have constructed a linear system for computing factor base
logarithms in the prime field presented by K. McCurley [10] in 1990. The problem
is as follows. McCurley reports a communication from a Diffie-Hellman-scheme
where solving one of two discrete log problems is required. The first one is

7% = 127402180119973946824269244334322849749382042586931621654557
735290322914679095998681860978813046595166455458144280588076
766033781

mod p (6)

7149 4
5 -

where p is the 129—-digit number p = 2-739 - ¢ + 1, with the prime ¢ =

Let b be the number on the right hand side of (6). Using a combination of
trial division and ECM, we were able to reduce the task to computing logs of
numbers having at most 26 digits:

783-b5§m0dp

s :=4619711127978896860938951862684562704546318368552502313923151895
t := 4473403703344776904801768202135309245019878204728906521727347813

§ =3-5-11-23-11287-10547587 - 2916781859 - 22761868782949840132373
-51337921071904669

t = 31-67-7351-402869 - 2599909498829 - 3598631011739
77731271923481246820848221 (7

We chose the number field Q(«), a a root of
739X° — 5152.

The same number field is Q(w), where w := 739 - a is a root of

X

= 9) -739° = X° — 1536574451494432,

9(X) = f(
w being an algebraic integer. The set of square divisors of disc(g) is {2, 5, 7, 23, 739}.
The Dedekind test eventually revealed 2, 5,739 as index divisors, but that was
not really an obstruction since the prime ideal factorization in O is the same as in
Z|w]. We have examined this by using the well known package for computational
algebraic number theory PARI [2].
In order to construct a homomorphism ¢ : Z[a] — Z/pZ we set

o(a) := 730 = 22539340290692258087863249.

We set the rational large prime bound L; to 10 and the algebraic large prime
bound Lj to 5-10%. The sieve range was —5-10° < ¢ <5-108,1 <d <2-108

Within 48.5 mips years, we have collected and reduced the following number
of relations. The type of relation (smalls, singles, doubles, triples, quadruples)
refers to whether the relation contains 0, 1, 2, 3 or 4 large primes respectively.
The term filtering means elimination of large primes occurring only once.

type of rel | # after sieving|# after filtering
smalls 2826 2826
singles 37046 32261
doubles 183383 141120
triples 410843 283197
quadruples 332133 210381
total 966231 666959
of Ip 797794 476883

This led to 190077 full relations. As we need only 40000 full relations, we
have had a bound of maximal 57 partials per full relation (average 36).

Further sieving, reaching 110.6 mips years, led with the aid of the cycle
explosion phenomenon ([16], [32]) to more than 300000 cycles.

type of rel | # after sieving | # after filtering
smalls 3199 3199
singles 42407 38446
doubles 211888 176307
triples 478543 369116
quadruples 388685 282832
total 1124722 869900
cycles 306717

The large amount of new cycles also has got the advantage of getting much more
short cycles — here a new algorithm of combining cycles shows its worth [13].
The resulting matrix is more sparse, we got a maximal cycle length of 22 per
full relation (average 15).

Getting the approximations of the g—adic logarithms took 1 min per full
relation on a Sparc 20 and was parallelized in a trivial way.

The computation of the 15 solution vectors of the 40015 X 40000 linear
system mod q was done on three Sparc 20 stations within a month by using the
Lanczos algorithm.

We actually computed the logs of the values of (7), which are in our factor
base, for example

log, 67 =
18524527685763603567792984693345199476969676775144205771380705966
9858757297002262476738378805178371906679858038237405561749622894

log, 7351 =
14463196894490829567073226898360380983979979583855805954303228348
5207949244587802105820524568207076947699912603427802417020634593

log, 11287 =
79051812480562894353242540763178671604799913001076931312515301149
375298305476653734488443974490137127049808298345258246689629965.

The solution of £ mod 2 and mod 739 was easily obtained by using the
Pohlig-Hellman algorithm with Pollard-Brent improvement ([5], [23], [31]).
Parts of the computation were done by using our package for computational
algebraic number theory named LiDIA

http://www-jb.cs.uni-sb.de/LiDIA/linkhtml/lidia/lidia.html,

which contains libI as the underlying multiprecision arithmetic [14].

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

24

L. M. Adleman, Factoring numbers using singular integers, Proc. 23rd Annual
ACM STOC, New Orleans, May 6-8, pp. 64-71, 1991

C. Batut, D. Bernardi, H. Cohen, M. Olivier, GP/PARI CALCULATOR Version
1.89.03, 1995

. D. Bernstein, A. K. Lenstra, A general Number Field Sieve Implementation, in

[19], 1991

. 1. Biehl, J. Buchmann, Th. Papanikolaou LiDIA — A library for computational

number theory, Universitdt des Saarlandes, preprint, 1995

. R. P. Brent, An Improved Monte Carlo Factorization Algorithm, Nordisk Tidskrift

for Informationsbehandling (BIT) 20, pp. 176-184, 1980

. J. Buchmann, J. Loho, J. Zayer, An implementation of the general number field

sieve, Advances in Cryptology Crypto 93 Lecture Notes in Computer Science 773,
pp- 159-165, 1993

. J. P. Buhler, H. W. Lenstra, C. Pomerance, Factoring integers with the number

field sieve, in [19], 1992

. H. Cohen, A course in computational algebraic number theory, Springer, 1993
. D. Coppersmith, A. Odlyzko, R. Schroeppel, Discrete Logarithms in GF(p), Algo-

rithmica 1, pp. 1-15, 1986

K. McCurley, The Discrete Logarithm Problem, Cryptology and Computational
Number Theory, Proc. Symp. in Applied Mathematics, American Mathematical
Society, 1990

Th. Denny, A Structured Gauss Implementation for GF(p), Universitdt des Saar-
landes, to appear

Th. Denny, A Lanczos Implementation for GF(p), Universitat des Saarlandes, to
appear

Th. Denny, V. Miiller, On the Reduction of Composed Relations from the Number
Field Sieve, Algorithmic Number Theory Symposium IT (ANTS II), 1996

R. Dentzer, libI: eine lange ganzzahlige Arithmetik, IWR Heidelberg, 1991

W. Diffie, M. Hellman, New directions in Cryptography. IEEE Trans. Inform.
Theory 22, pp. 472-492, 1976

B. Dodson, A. K. Lenstra, NFS with four large primes, Advances in Cryptology
Crypto '95, Lecture Notes in Computer Science 963, Springer, 1995

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Inform. Theory 31, pp. 469-472, 1985

D. Gordon, Discrete Logarithms in GF(p) using the Number Field Sieve, STAM J.
Discrete Math., Vol 6, pp. 124-138., 1993

A. K. Lenstra, H. W. Lenstra, The development of the number field sieve, Springer,
1993

A. K. Lenstra, H. W. Lenstra, M. S. Manasse, J. M. Pollard, The number field
sieve, Abstract: Proc. 22nd Ann. ACM Symp. on Theory of Computing (STOC),
564-572, 1990

National Institute of Standards and Technology. The Digital Signature Standard,
proposal and discussion, Comm. of the ACM, 35 (7), pp. 36-54, 1992

A. Odlyzko, M. LaMacchia, Discrete Logarithms in GF(p), 1991

J. M. Pollard, Monte Carlo Methods for Index Computation (mod p), Math. Comp.
32, 918-924, 1978

J. M. Pollard, The lattice sieve, in [19], 1991

25

26.
27.

28.
29.
30.

31.

32

S. Pohlig, M. Hellman, An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance, IEEE Trans. on Inform. Theory 24, 106—
110, 1978

O. Schirokauer, personal communication, 1995

O. Schirokauer, Discrete Logarithms and Local Units, Phil. Trans. R. Soc. Lond. A
345, 409-423, 1993

Th. Setz, R. Roth, LiPS: a System for Distributed Processing on Workstations,
SFB 124 TP D5, Universitat des Saarlandes, 1992

D. R. Stinson, Cryptography in Theory and Practice, CRC Press, 1995

D. Shanks, Class Number, a Theory of Factorization and Genera, Proc. Symposium
Pure Mathematics Vol. 20, American Mathematical Society, Providence, R. 1., pp.
415-440, 1970

D. Weber, An Implementation of the Number Field Sieve to Compute Discrete Log-
arithms mod p, Advances in Cryptology — Eurocrypt’95, Lecture Notes in Com-
puter Science 921,pp. 95-105, 1995

J. Zayer, Foktorisieren mit dem Number Field Sieve, PhD thesis, Saarbriicken, 1995

