
3. Shell 200

Timed Scripts and Commands: at

start a script at one predefined time

at 10:00 Jul 31 2015

at> job

at> <EOT>

job 2 at 2015-07-31 10:00

(EOT is generated by typing Ctrl+d)

Apart from a date, the following may be used:

now, today, tomorrow, mon, tue, ..., sun, +2 hours, ..., +3 days

The user receives the stdout of the command by e-mail.

❀local mail must be configured and running

3. Shell 201

Timed Scripts and Commands: at (2)

security problem: user may install backdoors for later use

if in doubt, set permissions who may use at

via at.allow, at.deny

location of these files varies

on FreeBSD under /var/at

on OpenBSD under /var/cron

on Linux under /etc

3. Shell 202

Timed Scripts and Commands: crontab (1)

start a script periodically

crontab -e

mm hh DD MM W command

fill in

• values (a number)

• a range (two number separated by a hyphen)

• a comma–separated list

• an asterisk ,,*”

3. Shell 203

Timed Scripts and Commands: crontab (2)

example

0,15,30,45 13 * 5-8 wed job

start job

May till August

on each wednesday

at 13:00, 13:15, 13:30, 13:45

set environment by assignments as usual

crontab -l

http_proxy=http://www-proxy.htw-saarland.de:3128/

0 * * * * /usr/sbin/ntpd -q -g

30 22 * * * /usr/sbin/pkg audit -F

4. Processes 204

Processes

A process is a program currently executed by a processor.

Each process has a unique ID, the process ID, for short PID.

A processes is created via the fork() system call.

fork()

parent

parent

child
(copy)

child
(new program)

execve()

fork() creates an identical copy of the process (memory, registers).

These are called

• parent process (fork() returns pid of child)

• child process (fork() returns 0)

4. Processes 205

Processes: Context Switch

occasions:

• if the timeslice has elapsed

• on interrupt

method:

• save registers of current process

(instruction pointer, memory segment, accu, stack pointer,. . .)

• load registers of next process

❀ cache values become useless

4. Processes 206

Threads

Threads are executing tasks within a process.

They share the same address space.

Faster context switch (no memory registers save/restore).

lightweight processes

Problems:

• locking read/write to common address space ❀deadlock

• blocking system calls block the entire process

4. Processes 207

Threads: Programming

libpthread implements POSIX threads

• pthread create()

– creates thread and fills a pthread t struct

– attributes (may be NULL)

– function pointer (entry point to the thread, param arg)

– pointer arg to a self-defined thread data structure

• pthread join()

– waits for thread termination

– which pthread t

– arg is adress of pointer to exit–value of thread

• pthread exit()

– terminates the thread

– arg is pointer to exit value

4. Processes 208

Scheduler

round–robin in the run queue

processes have priorities

priority can be set with

• nice

• renice

• setpriority()

4. Processes 209

Process Status

A process can be

• running on a processor (R)

• temporarily sleeping < 20s (S)

by sleep(), read(), accept(),. . .

• idle, sleeping ≥ 20s (I)

• uninterruptably sleeping (D)

usually by I/O

• stopped or traced (T)

• swapped (W)

• a zombie (Z)

The status is shown in the STAT column of ps.

4. Processes 210

UNIX Command ps (1)

History: AT&T UNIX Version 4 (1974)

Flags:

• show own processes with controlling tty sorted by TTY, PID

• -x also processes without controlling tty

• -a also processes of other users

• -r sorted by CPU usage (Linux: only running p.)

• -u most frequently needed data

(user, pid, %cpu, %mem, vsz, rss, tt, state, start, time, command)

4. Processes 211

UNIX Command ps (2)

ps output (option u):

• %cpu average (up to 1 minute) percentage of CPU time w.r.t. real time

• %mem percentage of real memory used

• RSS real memory used (1K units) = resident set size

• VSZ virtual size (1K units) = code+data+stack

• TT controlling terminal – ,,?” if it does not exist (anymore)

• STAT process status

• START when the process did start

• TIME how much time has been used by the process

• COMMAND name of process possibly with command args

4. Processes 212

ps output (option l):

• MWCHAN wait channel/mutex – reason for blocking

• PPID parent pid

• CPU short-term CPU usage factor (for scheduling)

• PRI scheduling priority

• NI nice value

ps output (option v):

• SL sleep time (in seconds; max. 127)

• RE core residency time (in seconds; max. 127)

• PAGEIN page faults (memory page in swap space)

• LIM memoryuse limit

• TSIZ text size (code only, in Kbytes)

4. Processes 213

Creating a Process (1)

The fork() system call is declared as

pid t fork(void);

the child. . .

1. has a new unique PID

2. has its CPU–time set to 0

3. stores the process ID of its parent as the PPIDa

4. inherits almost everything from the parent (file descriptors etc)

5. does not inherit pending signals and file locks

aparent process ID

4. Processes 214

Creating a Process (2)

return codes of fork() are

• 0 in the child process

• the PID of the child in the parent process

• –1 on error

typical code fragment:

switch (fork())

{

case 0: child_code();

break;

case -1: error_handling();

break;

default: parent_code();

break;

}

4. Processes 215

Replacing a Process

The execve() system call replaces the current process image with a

new process image.

int execve(const char *filename, char *const argv [],

char *const envp[]);

• filename contains the path to the new program

• argv are the command line arguments for the new process

• envp is a string array of environment strings

The argv and envp arrays are terminated by the NULL pointer.

4. Processes 216

Waiting for Completion

pid t wait(int *status);

pid t waitpid(pid t wpid, int *status, int options);

The parent shall call wait() or waitpid() which blocks the parent

until a child (maybe with a given pid) has reported its status.

Children which have exited, but are not awaited by the parent, are called

zombies. These are denoted by Z in the process status.

4. Processes 217

Waiting for Completion (2)

pid_t wait(int *status);

pid_t waitpid(pid_t wpid, int *status, int options);

will report following events:

• process termination (default)

• WUNTRACED-option: child receives signals

SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP

• WCONTINUED-option: child receives signal SIGCONT

The status consists of

• exit code

• signal (if any)

get exit/signal from status using WEXITSTATUS() or WTERMSIG().

4. Processes 218

Variations on execve()

The C library provides 5 interfaces to execve().

These differ with respect to

• search path

• format of the argv’s

• environment included

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ...,

char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

4. Processes 219

The Environment (1)

Contains semi–permanent configuration data for a program.

Examples:

• PATH – the program search path

• TERM – the kind of terminal

• PRINTER – the user’s default printer

4. Processes 220

The Environment (2)

environment variables and programming

char *getenv(const char *name);

error: the variable does not exist ❀NULL pointer

int setenv(const char *name, const char *value, int overwrite);

error: no memory available, invalid variable name ❀ –1

4. Processes 221

The Environment (3)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv)

{

char *p;

if (argc>1)

{

p=getenv(argv[1]);

if (p)

printf("%s=%s\n",argv[1],p);

else

printf("%s is not set\n",argv[1]);

}

return 0;

}

4. Processes 222

The Environment (4)

environment variables and shells:

$ TESTVAR=abc

$ echo $TESTVAR

abc

$./getenv TESTVAR

TESTVAR is not set

$ export TESTVAR

$./getenv TESTVAR

TESTVAR=abc

$ TESTVAR=

$./getenv TESTVAR

TESTVAR=

$ unset TESTVAR

$./getenv TESTVAR

TESTVAR is not set

4. Processes 223

Process Resource Usage (1)

get resource usage

int getrusage(int who, struct rusage *usage);

the parameter who is RUSAGE_SELF or RUSAGE_CHILDREN

4. Processes 224

Process Resource Usage (2)

4. Processes 225

struct rusage {

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

long ru_minflt; /* minor page faults (already in mem) */

long ru_majflt; /* major page faults (on disk) */

long ru_nswap; /* swaps */

/* --- the following not always supported under Linux, but under BSD --- */

long ru_maxrss; /* maximum resident set size (L 2.6.32) */

long ru_ixrss; /* integral shared memory size */

long ru_idrss; /* integral unshared data size */

long ru_isrss; /* integral unshared stack size */

long ru_inblock; /* block input operations (L 2.6.22) */

long ru_oublock; /* block output operations (L 2.6.22) */

long ru_msgsnd; /* messages sent */

long ru_msgrcv; /* messages received */

long ru_nsignals; /* signals received */

long ru_nvcsw; /* voluntary context switches (L 2.6) */

long ru_nivcsw; /* involuntary context switches (L 2.6) */

};

4. Processes 226

Process Resource Usage (3)

the shell can time a command

$ time sleep 3

real 0m3.006s

user 0m0.000s

sys 0m0.000s

real time time elapsed on the clock

system time processor time in system calls

user time processor time in other portions of code

4. Processes 227

Process Resource Usage (4)

an I/O intensive application:

$ time dd if=/dev/urandom of=random.out bs=1m count=200

200+0 records in

200+0 records out

209715200 bytes transferred in 11.692440 secs (17935966 bytes/sec)

real 0m11.697s

user 0m0.001s

sys 0m11.300s

4. Processes 228

Process Resource Usage (4)

a CPU intensive application:

$ time factor 8932749749283749123910928340911337777712310123029313399

factorization

677*18918008912341166269*697462838611233059396017768167623

real 0m22.002s

user 0m21.662s

sys 0m0.050s

4. Processes 229

Semaphores

an IPC mechanism

inter-process communication

needed if two processes share a common resource, primarily memory

shared memory

4. Processes 230

Shared Memory Problem

assume value 0 in adress 0x10000000

Process 1 writes value 29 to address 0x10000000

Process 2 reads from address 0x10000000

when process 2 reads from 0x10000000, does it read a 0 or a 29 ?

4. Processes 231

Problem

• perhaps process 1 was stopped

• perhaps process 2 was stopped

• perhaps one of them runs at lowest priority

• perhaps one of them delayed because of a I/O problem

• . . .

process 2 must be stopped before reading until process 1 has written

4. Processes 232

Semaphores: View of Process

Semaphore contains 0 ❀

I want to read. . .

(P–Operation)

I am allowed to read. . .

(someone did V–Operation)

Semaphore contained ≥ 1

4. Processes 233

Theory of Semaphores

invented by Dijkstra 1968

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

critical section: only one process is allowed to enter CS

P–Operation: (dutch ,,passeren”)

• process wants to enter CS,

• but is blocked if some other process in CS

• in CS, process allocated the resource

V–Operation: (dutch ,,vrijgeven”)

• process leaves CS,

• releases resource

4. Processes 234

UNIX: Semaphore Set

a vector of n semaphores comprise a semaphore set

semaphore: (semaphore ID, semaphore number)

obtain a semaphore set by semget()

operations on semaphore set by semop() : P, V

remove semaphore set by semctl()

4. Processes 235

Semaphore Semantics

• semaphore has integer values

• normal P–Operation corresponds to –1

(which is blocked if semaphore value = 0)

• normal V–Operation corresponds to +1

can use other values than ±1

P–Operation can be made non–blocking

