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Abstract. This paper discusses the security of the Fast Data Encipher-
ment Algorithm (FEAL) against Linear Cryptanalysis. It has been con-
firmed that the entire subkeys used in FEAL–8 can be derived with 225

pairs of known plaintext and ciphertext with a success rate over 70%
spending about 1 hour using a WS (SPARCstation 10 Model 30). This
paper also evaluates the security of FEAL–N in comparison with that of
the Data Encryption Standard (DES).

1 Introduction

This paper analyzes the applicability of Linear Cryptanalysis to the Fast Data
Encipherment Algorithm (FEAL)[MSS88]. The structure of FEAL is similar to
DES, except, for example, the permutation and the S-Boxes in F-function of
DES are replaced by byte rotation and addition operation which are suitable
for software implementation, and these differences are interesting from the view-
point of cryptanalysis. In the Linear Cryptanalysis of FEAL, our main concerns
in evaluating the security of FEAL considering the replacement of F-function
and S-Boxes are: 1) how to find effective linear expressions, 2) an estimation
of the success rate against the number of pairs of plaintexts and corresponding
ciphertexts, N , and the approximate probability, p′, and 3) an estimation of the
memory size and the processing amount of the attack.

2 Linear Cryptanalysis

2.1 Notations and Preliminaries

The modified FEAL and its modified F-function [MY92] are analyzed here.
The S-Boxes, S0 and S1, of FEAL are defined as Si(x, y) = ROL2(x + y + i
(mod 256)), where ROL2 rotates its input two bits to the left.
We use the similar notations and defines the right most bit of each symbol

as the 0-th bit, which is the lowest bit, as well as in the reference [M93-1]

2.2 Principle

Linear Cryptanalysis analyzes the probability that the following equation holds.

P [i1, i2, . . . , ia]⊕ C[j1, j2, . . . , jb] = S[k1, k2 . . . , kc], (1)

where i1, i2, . . . , ia, j1, j2, . . . , jb, k1, k2 . . . , kc are fixed bit locations defined by
the linear expression, (ΓP, ΓC, ΓK). The value of the right side of this equation
depends only on the key values. We denote S[k1, k2 . . . , kc] by S simply.
Two kinds of probability are defined in Linear Cryptanalysis: one is p =

ProbP,K{E(P,K)(ΓC)⊕P (ΓP ) = K(ΓK)}, and the other is the absolute value
of probability different from a half, p′ = |p− 1/2|. Hereafter, p′ will be used as
the probability of the linear expression (ΓP, ΓC, ΓK).



2.3 Implementation Techniques

Matsui proposed the following practical implementation, and captured the effec-
tive text bits among text information, P and C, which are essential to calculate
Equation (2), and the effective key bits among key information, K1 and Kn,
which are essential to calculate Equation (2). Hereafter, t and k denote the
number of effective text bits and the number of effective key bits, respectively.

P [i1, . . . , ia]⊕ C[j1, . . . , jb]⊕ F1(PL,K1)[u1, . . . , ud]

⊕Fn(CL,Kn)[v1, . . . , ve] = S. (2)

In the following procedure, we first count the text frequency on the effective text
bits and then count the key frequency on the effective key bits.

Algorithm 1 (Counter Technique)

[Data Counting Phase]

Step 1: Prepare 2t counters Ui(0 ≤ i < 2
t), where i corresponds to each value

on the t effective text bits of Equation (2).
Step 2: For each plaintext and the corresponding ciphertext, compute the value

‘i’ of Step 1 and count up the counter Ui by one.
[Key Counting Phase]

Step 3: Prepare 2k counters Tj(0 ≤ j < 2
k), where j corresponds to each value

on the k effective text bits of Equation (2).
Step 4: For each ‘j’ of Step 3, let Tj be the sum of Ui’s such that the left side

of Equation (2), whose value can be uniquely determined by i and j,
is equal to 0.

Step 5: Let Tmax be the maximal value and Tmin be the minimal value of all
Ti,j ’s.

If |Tmax − N/2| > |Tmin −N/2|, then adopt the key candidate corre-
sponding to Tmax and guess S = 0 when p > 1/2 or 1 when p < 1/2.

If |Tmax − N/2| < |Tmin −N/2|, then adopt the key candidate corre-
sponding to Tmin and guess S = 1 when p > 1/2 or 0 when p < 1/2.

[Exhaustive Search Phase]
Step 6: Derive the remaining key bits exhaustively.

The computational complexity of this procedure except Step 6 is O(N) +
O(2t+k). The number of counters, Ui and Tj, required by this procedure is 2

t+2k.

3 Linear Approximation of FEAL

3.1 What are the Problems

The essential differences between DES and FEAL are the structure of S-Boxes
and that of F-function. More exactly, S-Boxes of DES are defined in a non-
mathematical way using tables. S-Boxes of FEAL are defined mathematically
using modular addition calculation with two bits left rotation. So it seems easier
to find some property of S-Boxes of FEAL than that of DES. On the other
hand, the eight S-Boxes in F-function of DES act in parallel more independently
than four S-Boxes in F-function of FEAL which act sequentially, where the byte
rotation is built in instead of the permutation of DES. Thus, it seems easier to
find some semi-global property of F-function of DES than that of FEAL.
It is not clear how these differences influence Linear Cryptanalysis.



3.2 Linear Expressions of F-function

We get various linear expressions of S-Boxes approximating the addition opera-
tion with the bitwise consideration of carry propagation as was done in [CG91].
When a + b = x, for example, a[i] ⊕ b[i] = x[i] holds with probability of

2−(i+1)(i ≥ 0), a[i, i−j]⊕b[i] = x[i], a[i]⊕b[i, i−j] = x[i] and a[i]⊕b[i] = x[i, i−j]
hold with probability of 2−(j+1)(1 ≤ j ≤ i).
Note that a[0]⊕ b[0] = x[0] always holds, since there is no carry at the least

significant bit in the addition operation, and this gives 15 non-trivial linear ex-
pressions of F-function with probability of 1/2, which can be always extended to
3-round linear expressions. If j = 1, we can make many examples with probabil-
ity of 1/4 ignoring the bit position of i. This gives many local linear expressions
with probability of 1/4.
Here the concatenation rule of XOR and BRANCH operations inside the F-

function is also applicable in the same way as that between F-functions described
in Section ??.

3.3 Linear Expressions of Reduced Round FEAL

We developed the following search algorithm to find effective 7-round linear
expressions, where (ΓY4−r, ΓX4−r) = (ΓY4+r, ΓX4+r) holds for r = 1, 2, 3.

Algorithm 2 (Search Algorithm of 7-Round Linear Expression)

Step 1: Set (ΓY4, ΓX4) = (0, 0).

Step 2: Select a linear expression, (ΓY2, ΓX2), of F-function whose probability
is 12 .

Step 3: Search ΓY3 where (ΓY3, ΓX3) has the probability of 2
−2, given ΓX3 =

ΓY2.
Step 4: Search ΓX ′2 where (ΓX2, ΓX

′

2) has the probability of greater than or
equal to 2−3.

Step 5: Put (ΓY1, ΓX1) = (ΓY3⊕ΓX2, ΓX3⊕ΓX
′

2). Check whether its prob-
ability is greater than or equal to 2−4 exhaustively, if (ΓY3, ΓX3) ac-
tivates the same S-Boxes of F-function as (ΓX2, ΓX

′

2).

We have found the following eight pairs (ΓX2, ΓX
′

2) using the above algo-
rithm and sixteen 7-round linear expressions with probability of greater than
2−9. This is one of examples with probability of 1.764× 2−9, which is effective
in our implementation described in Section 5.

ΓX2 ΓX ′2
00000100 10105050

00000100 18185858

00000100 10107878

00000100 18187070

01000000 50101010

01000000 58181818

01000000 70101818

01000000 78181010

r ΓYr ΓXr p′r
P 1D000400 50101010

1 1D000400 54111010 85× 2−10

2 04010000 01000000 2−1

3 1C000400 04010000 2−2

4 00000000 00000000 2−1

5 1C000400 04010000 2−2

6 04010000 01000000 2−1

7 1D000400 54111010 85× 2−10































1.764× 2−9

C 1D000400 50101010

Note that the middle 5-round part of the above expression also has the proba-
bility of 1/8, while Biham described a 5-round linear expression with probability
of 1/32 in [B94].



4 Discussion

4.1 Attack Strategy

We will discuss the attack strategy against FEAL–8 in this section: that is,
1) which is a better technique, 2-Round Elimination or 1-Round Elimination,
and 2) which is the better expression for the 7-round case, Biham’s or ours, as
estimated from the memory size and processing amount.
Since the approximate probability of a linear expression for 6-round is larger

than that for 7-round and N = c×p′−2 holds, the 2-Round Elimination strategy
is better than 1-Round Elimination from the standpoint of the required number
of pairs for attack. However, 2-Round Elimination is infeasible, since the number
of effective text bits, t, and the number of effective key bits, k, satisfy t, k = 24 ∼
30 roughly, and the processing amount is O(242∼48) in 2-Round Elimination
where we assume N = 218.
Let us estimate t and k for Biham’s linear expression and those for our

expression for 7-round, assuming the 1-Round Elimination Technique. An attack
using our linear expression requires more running time than that using Biham’s,
since t, k = 20 ∼ 24 holds roughly, and the processing amount is O(236∼40). An
attack of 1-Round Elimination using Biham’s 7-round expression is practical,
since t, k = 12 ∼ 15 and N = c × 222 holds, and the processing amount of
Algorithm 1 is O(224∼30). The number of counters, Ui and Tj , required by
Algorithm 1 is 212∼15, which is acceptable.
We decided to adopt the 1-Round Elimination Technique using Biham’s

linear expression for the first phase of an attack against FEAL–8, that requires
us to analyze the following equation:

PL[16, 23, 25, 26, 31]⊕ CH [31]⊕ CL[16, 23, 25, 26]

⊕F8(CH ⊕ CL,K8)[23, 25, 31] = S. (3)

Our linear expression is effective for the later phases of an attack to derive
subkeys other than those derived from the above equation.

4.2 Comparison with DES

The best expression can be obtained by an exhaustive search algorithm against
DES [M93-1, M94-2]. It is an interesting fact that the number of active S-
Boxes, which are approximated with a certain masking value, at each round
of F-function is at most one in the best expression of 16-round DES. Since the
bit length of data input to each S-Box is 6, the number of effective key bits is
12 in Equation (2).
On the other hand, since the number of active S-Boxes of Equation (2) against

FEAL is four if the Biham’s linear expression is used, and the byte rotation is
built in implicitly between S-Boxes, the number of effective key bits and effec-
tive text bits seems to be 24 ∼ 30, which is larger than is true with DES. Thus
2-Round Elimination is infeasible in FEAL, which it is efficient in DES. Unfor-
tunately, since we don’t have any practical search algorithm to obtain the best
expression of FEAL, there might be a better linear expression than Biham’s.
How about the effective key and text bits? The closer from the right side an

input bit is to a bit position related to a reference point output by the eighth F-
function, the more strongly the value of the input bit determines the value of the
XOR operation performed on the reference points, F8(CH⊕CL,K8)[23, 25, 31] in
Equation (2). Therefore, the effective key bits should be subdivided into explored
key bits and detected key bits for an attack against FEAL. Note that since each
key bit input to an S-Box of DES influences all output bits more equally than
that of FEAL, detected key bits are identical to explored key bits in DES. As a



result, the treatment of effective key bits is simpler in an attack against DES than
against FEAL. The similar discussion is valid in the treatment of effective text
bits, which provides the number of counter Ui. Thus there are various strategies
to reduce the number of effective (explored/detected) key/text bits in an attack
against FEAL.
Concerning the parameter, N, of FEAL–N, where N means the iteration

number of F-function, it seems that while FEAL–32 is as secure as DES against
Differential Cryptanalysis, FEAL–16 is as secure as DES from the standpoint
of Linear Cryptanalysis, since the number of key bits which are explored by the
attack is 12 with the 14-round linear expression with probability of 1.192× 2−21

in DES, while it is 12 ∼ 15 with the 15-round linear expression with probability
of 2−23 in FEAL assuming the Biham’s iterative 4-round expression is applied
to the 15-round case.

5 Experimentation Results

The following information was described in [OA94]

(1) A table relating the success rate, the number of pairs, and the effective
(explored/ detected) key bits needed to solve Equation (3) using the 1-Round
Elimination Technique.

(2) How to derive the remaining values of all subkeys .
(3) How to improve the success rate.

Note that there might also be more efficient strategy than ours to decrease
the number of effective text and key bits.

6 Concluding Remarks

It has been confirmed that the entire subkeys used in FEAL–8 can be derived
from 225 known plaintexts with a success rate over 70% spending about 1 hour,
from 226 known plaintexts with a success rate about 100% spending a little over
1 hour using a WS (SPARCstation 10 Model 30).
It seems that while FEAL–32 is as secure as DES against Differential Crypt-

analysis, FEAL–16 is as secure as DES from the standpoint of Linear Cryptanal-
ysis if we restrict ourselves to Matsui’s implementation technique using Biham’s
linear expression. There are several open problems:

(1) Search algorithm to obtain the best expression of FEAL,
(2) More efficient technique than Algorithm 1, and
(3) More efficient strategy for reducing the numbers of effective text bits and
effective key bits in an attack against FEAL–8.
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