Differential Cryptanalysis of Feal and N-Hash
Eli Biham Adi Shamir

The Weizmann Institute of Science
Department of Applied Mathematics and Computer Science
Rehovot 76100, Israel

Abstract

In [1,2] we introduced the notion of differential cryptanalysis and described
its application to DES[11] and several of its variants. In this paper we show the
applicability of differential cryptanalysis to the Feal family of encryption algo-
rithms and to the N-Hash hash function. In addition, we show how to transform
differential cryptanalytic chosen plaintext attacks into known plaintext attacks.

1 Introduction

Feal is a family of encryption algorithms, which are designed to have simple and
efficient software implementations on eight-bit microprocessors. The original member
of this family, called Feal-4[13], had four rounds. This version was broken by Den
Boer[3] using a chosen plaintext attack with 100 to 10000 ciphertexts.

The designers of Feal reacted by creating a second version, called Feal-8[12,9] in
which the number of rounds was increased to eight, while the F' function was not
changed.

Feal-8 was broken by the differential cryptanalytic chosen plaintext attack de-
scribed in this paper. As a result, two new versions were added to the family: Feal-
N[6] with any even number N of rounds, and Feal-NX][7] with an extended 128-bit
key. In addition, The designers proposed a more complex eight-round version called
N-Hash[8] as a cryptographically strong hash function which maps arbitrarily long
inputs into 128-bit values.

Recently, two chosen plaintext attacks on Feal were published. The one analyses
Feal-8 using 10000 encryptions[5]. This attack is partially derived from the attack
described in this paper. The other analyses Feal-4 using 20 encryptions[10].

1

The main results reported in this paper are as follows: Feal-8 is breakable under
a chosen plaintext attack with 2000 ciphertexts. Feal-N can be broken faster than
via exhaustive search for any /N < 31 rounds, and Feal-NX is just as easy to break as
Feal-N for any value of N. The differential cryptanalytic chosen plaintext attacks can
be transformed into known plaintext attacks which can be applied even in the CBC
mode of operation, provided we have sufficiently many known plaintext/ciphertext
pairs (about 2% in the case of Feal-8). Variants of N-Hash with up to 12 rounds
can be broken faster than via the birthday paradox, but for technical reasons we can
apply this attack only when the number of rounds is divisible by three. Feal-4 is
trivially breakable with eight chosen plaintexts or via a non-differential attack with
about 100000 known plaintexts.

2 Differential Cryptanalysis of Feal

The notion of differential cryptanalysis and its application to DES-like cryptosystems
are described in [1,2]. The basic tool of differential cryptanalytic attacks is a pair of
ciphertexts whose corresponding plaintexts have a particular difference. The method
analyses many pairs with the same difference, assigns probabilities to the different
possible keys and locates the most probable key. For Feal the difference is chosen as
a particular XORed value of the two plaintexts.

In this paper we use the notation introduced in [1,2] with additional Feal-specific
notation:

nz: An hexadecimal number is denoted by a subscript z (i.e., 10, = 16).

X*, X': At any intermediate point during the encryption of pairs of messages, X
and X* are the corresponding intermediate values of the two executions of the
algorithm, and X’ is defined to be X' = X & X*.

P, T: The plaintext and the ciphertext. Unlike in DES, they denote the real plaintext
and ciphertext without ignoring the initial and final transformations. Thus, the
characteristic’s input XOR Qp is different from the corresponding plaintext
XOR P'. Note that the definitions in [1,2] assume that P denotes the value
after the initial transformation rather than the real plaintext.

(L, R): The left and right halves of the plaintext P are denoted by L and R respec-
tively.

(I,7): The left and right halves of the ciphertext T are denoted by [and r respectively.
@y ..., h: The 32-bit inputs of the F' function in the various rounds. See figure 1.

A, ..., H: The 32-bit outputs of the F' function in the various rounds. See figure 1.

(K89,Kab)
KO
A [Fla f /i b f;
K1
ko
K2 K,
K3

KS —

w% L F
i Y K7
N F, F F, Fs
b (KcdKef)
C T)

Figure 1. The outline of Feal-8 and the F' function.
ROLn(X), RORn(X): Rotation of the byte X by n bits to the left and to the right
respectively.

Si(z,y): The Feal S boxes: S;(x,y) = ROL2(x +y+7 (mod 256)).
X;: The i*" byte of the 16, 32 or 64-bit X or the " bit of the byte X.
X;j+ The j* bit of X; (where 0 is the least significant bit).
am(K): The 32-bit value (0, Ky, K1,0) where K is 16-bit long.
mx(X): The 16-bit value (Xo ® X, Xo & X3) where X is 32-bit long.
®: The exclusive-or operator.

The structure of Feal (see figure 1) is similar to the structure of DES with a new
F' function and modified initial and final transformations. The F' function of Feal
contains two new operations: byte rotation which is XOR-linear and byte addition
which is not XOR-linear. The byte addition operation is the only non-linear operation
in Feal and therefore the strength of Feal crucially depends on its non-linearity. At

the beginning and at the end of the encryption process the right half of the data is
XORed with the left half of the data and the whole data is XORed with additional

subkeys, rather than permuted as in DES. Due to their linearity, these XORs pose
only minor difficulty to our attack.

The addition operations in the S boxes are not XOR-linear. However, there is still
a statistical relationship between the input XORs of pairs and their output XORs.
A table which shows the distribution of the input XORs and the output XORs of an
S box is called the pairs XOR distribution table of the S box. Such a table has an
entry for each combination of input XOR and output XOR, and the value of an entry
is the number of possible pairs with the corresponding input XOR and output XOR.
Usually several output XORs are possible for each input XOR. A special case arises
when the input XOR is zero, in which case the output XOR must be zero as well. We
say that X may cause Y (denoted by X — Y) if there is a pair in which the input
XOR is X and the output XOR is Y. We say that X may cause Y with probability
p if for a fraction p of the pairs with input XOR X, the output XOR is Y.

Since each S box has 16 input bits and only eight output bits it is not recommended
to use the pairs XOR distribution tables directly. Instead, in the first stage of the
analysis we use the joint distribution table of the two middle S boxes in the F' function
(inside the gray rectangle in figure 1). This combination has 16 input bits and 16
output bits, and the table has many interesting entries. For example, there are two
entries with probability 1 which are 00 00, — 00 00, and 80 80, — 00 02,. About 98%
of the entries are impossible (contain value 0). The average value of all the entries
is 1, but the average value of the possible entries is about 50. In appendix A we
describe how we can easily decide if X — Y or not for given XOR values X and Y
without consulting the table.

The S boxes also have the following properties with respect to pairs: Let 7 =
S;(X,Y). If X' =80, and Y’ = 80, then Z' = 00, always. If X' = 80, and Y’ = 00,
then Z' = 02, always. For any input XORs X’ and Y’ of the S boxes the resultant
output XOR Z" = ROL2(X’ @ Y"’) is obtained with probability about Q#TI'\Y’) where
#X is the number of bits set to 1 in the lower seven bits of the byte X and | is the
or operator. This happens because each bit which is different in the pairs (X and
X*, or Y and Y*) gives rise to a different carry with probability close to % If all the
carries happen at the same bits in the pair then the equation is satisfied.

The input of the F' function in the last round is a function of the ciphertext XORed
with an additional subkey of the final transformation rather than just a function of
the ciphertext (as in DES). There is an equivalent description of Feal in which the
XOR with the subkeys in the final transformation is eliminated and the 16-bit subkeys
XORed to the two middle bytes of the inputs of the F' function in the various rounds
are replaced by 32-bit values.

Definition 1 The 32-bit subkeys of the equivalent description in which the XOR
with the subkeys in the final transformation is eliminated are called actual subkeys.
The actual subkey which replaces the subkey K73 is denoted by AKi. The 16-bit
XOR combinations mx(AKi7) = (AKig@® AKi,, AKiy ® AKi3) are called 16-bit actual

subkeys. The actual subkey of the last round of a cryptosystem is called the last actual
subkey.

The actual subkeys in the even rounds ¢z + 1 are
AKi = Ked® Kef ® am(Ki).
The actual subkeys in the odd rounds 7 + 1 are
AKi = Kecd ® am(Ki).
The actual subkeys of the initial transformation are
AK89 = K89® Kcd@® Kef

AKab = Kab® Kef.

The actual subkeys of the final transformation are eliminated and thus their equiv-
alent values are zero. Our attack finds the actual subkeys rather than the subkeys
themselves since it finds XORs of the ciphertexts and internal values in the F' function.

A tool which pushes the knowledge of the XORs of pairs as many rounds as
possible is called a characteristic. An n-round characteristic €) starts with an input
XOR value Qp and assigns a probability in which the data XOR after n rounds
becomes €27. Two characteristics Q' and Q2 can be concatenated to form a longer
characteristic whenever Q} equals the swapped value of the two halves of Q%, and
the probability of Q is the product of the probabilities of Q! and Q2. A pair whose
intermediate XORs equal the values specified by a characteristic is called a right pair
with respect to the characteristic. Any other pair is called a wrong pair with respect
to the characteristic. Note that in Feal, the plaintext XOR P’ is different from the
input XOR of the characteristic {2p due to the initial and final transformations.

The simplest example of a one-round characteristic with probability 1 is:

C Qp = (I/,0,))
'

A =0, a =0, always

'
C Q= (I/,0,))

This characteristic is similar to the one-round characteristic with probability 1 of
DES. Unlike the case of DES, Feal has three other one-round characteristics with

M
™
A
w
A

probability 1. A typical one is:

< Qp = (L', 80 80 80 80,) >

!

a’ = 80 80 80 80, always

M

- A’=0200 00 02,
>: F -<

!

@T = (L' ® 02 00 00 02,,80 80 80 80xD

Three non-trivial three-round characteristics with probability 1 also exist. The one
derived from the above one-round characteristic is:

< Q2p =0200 00 02 80 80 80 80, >

!
i A =02000002, [| a'=80808080, | always
NP <
- B'=0 Foole V=0 always
. Cl=02000002, [L | _¢=80808080, always
NP B
!

< Qp =02 00 00 02 80 80 80 80, >

The following is a five-round characteristic with probability 1—16:

< Qp = A2 00 80 00 80 80 00 00, >

!

a’ = 80 80 00 00, always

M <

A =02 :
. A= 0200 00 00 L

B' =80 80 00 00, b= A0 00 80 00, with probability 1/4

- F e

always

D" =80 80 00 00, ~d' = A0 00 80 00, with probability 1/4

e/ =80 80 00 00, always

/: F <

< Qp = A2 00 80 00 80 80 00 00, >

This five-round characteristic can be extended to a six-round characteristic with
probability 1_§8’ for which not all the bit differences at the left half of the data after

the sixth round are fixed:

< Qp = A2 00 80 00 80 80 00 00, >

!

a’ = 80 80 00 00, always

M <

. A"=02 00 00 00,
>< F <

B' =80 80 00 00, b’ = A0 00 80 00, with probability 1/4

- F e

always
D' =80 80 00 00, with probability 1/4
E’" =02 00 00 00, e’ =80 80 00 00, always

C"D:F' = XY 8820827, Foole f'= A2 00 80 00, with probability 1/8

CQT:WYOEBQOSZ A2008000$>

where the values of X, Y, Z and W can range (for different right pairs) over X €
{5,6,7,9,A,B,D,E,F}, Y € {9,A,B}, Z € {0,1,3} and W = X @& 8. There is
another five-round characteristic with probability 1—16 which has a similar extension to
six rounds.

Among the most useful characteristics are those that can be iterated. A charac-
teristic €2 is called an iterative characteristic if the swapped value of the two halves
of Qp equals Q7. The iterative characteristics of Feal do not include one in which
a non-zero input XOR of the F' function may cause a zero output XOR since the
F' function is reversible, but there are other kinds of iterative characteristics. The

1

following is an iterative characteristic which has probability ; for each round:

< Q2p =80 60 80 00 80 60 80 00, >

!

A" =00 80 00 00,

N £ | =80608000, with probability 1/4

M <

B’ =00 80 00 00,

b =80 E0 80 00, with probability 1/4

C" =00 80 00 00, ¢ =80 F0 80 00, with probability 1/4

) £ |2 =380608000, with probability 1/4

< Q7 =80 60 80 00 80 60 80 00,. >

Given a sufficiently long characteristic and a right pair we can calculate the output
XOR of F function in the last round. The inputs themselves of this F' function are
known from the ciphertexts up to a XOR with subkeys. For any possible value of the
last actual subkey, we count the number of possible pairs for which the output XOR is
as expected. Every right pair suggests the right value of the actual subkey. The wrong
pairs suggest random values. Since the right pairs occur with the characteristic’s
probability, the right value of the actual subkey should be counted more often than
any other value. Therefore, it can be identified.

The number of pairs needed for a differential cryptanalytic attack depends on the
characteristic’s probability, on the number of subkey bits counted and on the level of
identification of the right key. The ratio between the number of right pairs and the
average count in a counting scheme is called the signal to noise ratio of the counting
scheme and is denoted by S/N. The signal to noise ratio of a counting scheme is

2k-p
a-f

where k is the number of subkey bits which are counted in 2* counters, p is the
characteristic’s probability, a is the average count per counted pair and 3 is the

S/N =

fraction of the counted pairs among all the pairs. The value of the signal to noise
ratio indicates how many right pairs are needed to the attack and thus the total
number of pairs needed. If the signal to noise ratio of a counting scheme is high only
few pairs are needed. If the signal to noise ratio is low many right pairs are needed.
If the signal to noise ratio is too low the attack may become impractical.

3 Cryptanalysis of Feal-8

This differential cryptanalytic chosen plaintext attack on Feal-8 uses about 1000 pairs
of ciphertexts whose corresponding plaintexts are chosen at random satisfying P’ =
A2 00 80 00 22 80 80 00,. This plaintext XOR, is motivated by the following six-round
characteristic whose probability is 1/128, for which not all the bits of Q are fixed:

< Qp = A2 00 80 00 80 80 00 00, >

!

a’ = 80 80 00 00, always

M

A =02
N 02 00 00 00, Foole

~ B'=80 80 00 00,

b = AD 00 80 00, with probability 1/4

always

with probability 1/4

e’ =80 80 00 00, always

£ |/ =A42008000, with probability 1/8

A F' = XY 882087,
P

CQT:WY082OSZ A20080001>

10

where the values of X, Y, Z and W can range (for different right pairs) over
X €{5,6,7,9,A,B,D,E,F},Y € {9,A,B}, Z€{0,1,3} and W = X &8,

Five shorter characteristics are derived from the first rounds of this six-round char-
acteristic. Each characteristic has a different number of rounds but all of them have
the same value of 2p. The one-round characteristic which is derived from the first
round of the six-round characteristic has probability 1. The two-round characteristic
which is derived from the first two rounds has probability 1/4. The three-round char-
acteristic also has probability 1/4. The four-round and the five-round characteristics
have probability 1/16.

3.1 Reducing Feal-8 to seven rounds

In order to find the last actual subkey we do the following. Given the ciphertexts T’
and T™ of a right pair, we can deduce:

g = WY 082082,

hl — ZIEBTI

G = flfoh=A42008000, ! ®r
H = l'egd=1IdWY 0820 8Z,.

Therefore, all the bits of ' and G" and 24 bits of each of ¢’ and H' are known.

The counting method is used to find the 16-bit last actual subkey. Filtering can
be done by the knowledge of bits in the other two bytes of H' and in the seventh
round. Assuming g’ — G’ we can reverse calculate the values of g; , from G’ by

96,0 = G6,2 @ G,1,0

gg,o = Gé,2 D GIZ,O

9;,0 = Gl2,2 @ G,1,0 S” 9:13,0

91,0 = GII,Z S 96,0 &) gé,o S 9:1),,0
and verify that the two known bits ¢} ; and g, from the characteristic are the same.
About % of the wrong pairs are discarded by this verification. We can also discard

about % of the other wrong pairs for which ¢’ /A G’. Assuming b’ — H' we can verify
the four bits of H], by

H(I),Z = H{,o D hf),o

H{,Q = h6,0 S” hll,O S” hl2,0 S” h’%,o
Hé,Z = H{,o D h,2,0 D hg,o

Hi;,Z = Hé,o D hg,o-

This verification discards about }—g of the remaining wrong pairs.

11

All the right pairs must be verified correctly. Only about i . % . % = ﬁ of
the wrong pairs should pass the three filters. Since the right pairs occur with the

characteristic’s probability of 1—;8, most of the remaining pairs are right pairs.

The counting scheme counts the number of pairs for which each value of the 16-bit
last actual subkey mx(AKT) is possible. The expected signal to noise ratio is
216 . 2—7 5

4 5 4

This ratio is so high that only eight right pairs are typically needed for the attack,
and thus the total number of pairs we have to examine is about 8 - 128 & 1000. Note
that we cannot distinguish between the right value of the 16-bit actual subkey and
the same value XORed with 80 80,. Therefore, we find two possibilities for the 16-bit
last actual subkey.

The following counting scheme is used to complete the last actual subkey. For this
counting scheme the five-round characteristic with probability 1/16 suffices. For each
pair (out of all the pairs) we calculate H and H* and get H' where for any 32-bit
X, X is the 16-bit value of its two middle bytes (i.e., (X, X5)). Then we calculate
¢ =1I'®H, F'=¢ o § and few other bits of ¢’ and discard any pair for which we

can conclude that ¢’ A G’ by the F' function using the bits we have found.

We try the 128 possibilities for the lowest seven bits of AK7,. For each value we
calculate Hy, H}, H) = Hy ® H§ and Fj = e[, ® H{ @ [and verify that f§ (from the
characteristic) and F! (from F') may cause this F{. We count the number of the pairs
satisfying this condition. The value of AK7, which is counted most often is likely
to be the right value. We cannot distinguish the upper bit of the value, so we try
just 128 possibilities (instead of 256 as was expected) and then try the two possible
values in the following steps, till the wrong one fails. In a similar way we find seven
bits of AK73. As a result, we find eight possibilities for AK7 and we can reduce the
cryptosystem to a seven-round cryptosystem.

3.2 Reducing the seven-round cryptosystem to six rounds

We assume that the last actual subkey is already known, so the cryptosystem can be
reduced to a seven-round cryptosystem. A right pair with respect to the five-round
characteristic with probability 1/16 satisfies

f' = A200 80 00,

gl — ll @ HI

G = hWef =naeA200 8000,

F' = edg =1'"® H &80 80 00 00,.
We verify that f' — F’ and ¢’ — G’ and count in two steps: the first step counts
on the 16-bit actual subkey and the second step counts on each one of the other two

12

bytes. The signal to noise ratio of the first step which finds the 16-bit actual subkey
mx(AKG6) is
216
1* (1)?
16 () - (3) 1

The signal to noise ratio of the second step which finds AK6, and AKG63 is

~ 2%,

S/N =

~ 231

S/N =

16 - (

In the first step one bit is indistinguishable and in the second step two bits are
indistinguishable. Therefore, we try all the eight possibilities of AK6 in parallel in
the following steps.

In total we find at most 64 possibilities for the last two actual subkeys and can
thus reduce the cryptosystem to six rounds.

3.3 Reducing the cryptosystem to 5, 4, 3, 2 and 1 rounds

Using the last two actual subkeys we can calculate H and G for any ciphertext 7" and
reduce the cryptosystem to six rounds. All the right pairs with respect to the five-
round characteristic satisty f' = ' @G’ = A2 00 80 00, and f" — ¢'®80 80 00 00, (¢’
can be calculated using the known AK7). Two bytes of AK5 equal their counterparts
in AK7 and only AK5, and AKb, are different. We try all the 2'¢ possibilities of these
two bytes. For each possibility and each pair we calculate F', F* and F' = F' & F*.
A right pair satisfies F' = ¢’ @ 80 80 00 00,. We count the number of pairs whose
"= A2 00 80 00, (as is enforced by the five-round characteristic) and whose above
values of F" are equal. The value of AK5 which is counted more often than any other
is likely to be the real value. The signal to noise ratio of this step is
916

— __ 960
IN=1gamagn=2"

In this step we can always distinguish all the bits using less than 1000 pairs.

Given AK5 we reduce the cryptosystem to five rounds and find AK4 using the
three-round characteristic. For each possible value of AK4 we count the number of
pairs which satisfy ¢’ = ¢’ @ F’ # 80 80 00 00, (the pairs whose ¢’ = 80 80 00 00,
are useless because it enforces a fixed output XOR), ¢’ — E' and d' — D' = ¢ & F'.
AK3 is calculated similarly by counting the pairs which satisfy d’ = A0 00 80 00, and
d — D'. AK2 is calculated similarly using the one-round characteristic and counting
the pairs which satisfy ¢ # 0, ¢ — C' and b’ — B’. AK1 is calculated similarly by
counting the pairs which satisfy o' — B’.

AKO cannot be calculated by this characteristic and plaintext XOR because A" =
02 00 00 00, always and thus all the possibilities succeed under the A" condition with

13

equal distribution. However, it can be found using other characteristics. The actual
subkeys of the initial transformation AK89 and AKab cannot be found without the
value of a plaintext even if all the other actual subkeys are known. In our case AKO,
AKB89 and AKab are not needed since the key itself can be easily obtained from the
actual subkeys we already found.

Although we find seven actual subkeys with the (true) assumption that many
actual subkeys have the same values in their first bytes, and the same values in their
last bytes, it is possible to extend this attack to the general case where all the actual
subkeys are independent (i.e., 8 - 32 + 2 - 32 = 320 independent bits).

3.4 Calculating the key itself

Using the values of the actual subkeys AK1-AKT the following XORs of the original
subkeys can be obtained:

K5& K7

K4& K6

K3& K5 (1)
K26 K4

K16 K3.

We can easily derive the key itself by analyzing the structure of the key processing
algorithm using these values.

We try all the 256 possible values of K5;. For each value we calculate [the values
in brackets are known from (1)]:

K71 - KSl@[KE)l@K?l]
K31 - K51®[K31@K51]
Kll - K31@[K11€BK31]

By the fourth round of the key processing:

K7y = K1, ® K5 @ S, (K7,,K3))
K5 = KT7,®[K5,® K7,
K3y = Kby @ [K3p® Kby
Kly = K30 [K1y® K3y

Now, we find two bytes of the key itself, one by the third round of the key processing
and the other by the second round:

K6y7 = K31€BK50@S;1(K51,K11)
Keys = K1, ® K3g® S;'(K34, Keyy)

14

and verify by the first round of the key processing that
S1(K1y @ Keyq, Keys) = K1,.
For each remaining value we try all the 256 possibilities of K4y. Then

K60 = K40@[K40@K60]
K20 - K40@[K20€BK40]

By the fourth round of the key processing:

K6, = Kly® Kb, ® S, (K6, K20)

K4, = K6, ®[K4, ® K6,

K2, = K4, ®[K2, ® K4]

KOy = K4y® K3,® K3, @S, (K6, K2y ® K21)
K0, = K4, ® K6, ® Sy ' (K7y, K3, ® K3,).

The rest of the key can be found by the third round of the key processing:

Key, = K20®K1lo® K1, ® S;'(K4,, K0y ® KO0,)
K6y5 = K?l@K41€BSJI(K50,K10®K11)
K6y6 = K30@K41@5&1(K40,K00)

and by the second round:

Keyy = K0y® Keys® Key; ® S; (K21, Keyy © Keys)
Key; = KO0, ® K2, 0 Sy (K30, Keys & Keyr)
K6y2 = Klo@K?l@Sal(KQO,KGyLL)

Given the key, we verify that it is really processed to the known actual subkeys
and that the XOR of a decrypted pair of ciphertexts equals the chosen plaintext XOR,
value. If this verification succeeds then the calculated key is very likely to be the real
key.

3.5 Results

This attack was implemented on a COMPAQ personal computer. It finds the key
in less than two minutes using 1000 pairs with more than 95% success rate. Using
quartets with two characteristics we need 1000 ciphertexts for this attack. Using 2000
pairs it finds the key with almost 100% success rate. The program uses 280K bytes
of memory.

15

4 Cryptanalysis of Feal-N and Feal-NX with N <
31 rounds

Feal-N[6] was suggested as an N-round extension of Feal-8 after our attack on Feal-8
was announced. Feal-NX[7] is similar to Feal-N but uses a longer 128-bit key and
a different key processing algorithm. Since our attack ignores the key processing
algorithm and finds the actual subkeys, we can apply it to both Feal-N and Feal-NX
with identical complexity and performance.

The attack on Feal with an arbitrary number of rounds is based on the following
iterative characteristic (whose plaintext XOR is P’ = 80 60 80 00 00 00 00 00,):

< 2p =80 60 80 00 80 60 80 00, >

!

A" =00 80 00 00,

5: F ol a’ = 80 60 80 00, with probability 1/4

M <

~ B'=00 80 00 00,

i =80 E0 80 00, with probability 1/4

C’" =00 80 00 00, ¢ =380 E0 80 00, with probability 1/4

Me F ol d" = 80 60 80 00, with probability 1/4
N

< Qp =80 60 80 00 80 60 80 00,. >

The probability of each round of this characteristic is 1/4, and it can be concatenated
to itself any number of times since the swapped value of the two halves of 2p equals
Qp. Thus, for any arbitrary n, an n-round characteristic with probability 4% =27
can be obtained.

An attack based on a characteristic which is shorter by two rounds than the
cryptosystem is called a 2R-attack. In this case, we know the ciphertext XOR T"
and the input XOR of the last round (w.l.g. we employ the notation of an eight-
round cryptosystem) h' by the ciphertext, and f’ and ¢’ by the characteristic. Thus,
G'=f'®h’ and H = ¢ ®l'. Each pair is verified to have ¢ — G’ and h' — H'

16

and the resultant pairs are used in the process of counting the possibilities in order to
find the last actual subkey. Two bits of the last actual subkey are indistinguishable.
Therefore, we must try the following steps in parallel for the four possibilities of these
two bits. The verification of ¢’ — G’ leaves only 27 of the pairs (since for either
g = 80 60 80 00, or ¢’ = 80 EO0 80 00, there are only about 2'3 possible output
XORs G’ and 2'3 - 2732 = 2719) The verification of i’ — H' leaves 27! of the pairs
(the fraction of the possible entries in the pairs XORs distribution table of the F
function). The signal to noise ratio of this process is thus

232

_ _ 955—2N
S/N_ 22(N-2) . 9-19 . =2)

The identification leaves

J = 92(N=2) 919 9-11 _ 92N-34

wrong pairs for each right pair. Therefore, the right value of the last subkey is counted
with a detectably higher probability than a random value up to N < 28 rounds, and
thus we can break Feal-N with 2R-attacks for any N < 28 rounds, faster than via
exhaustive search, as shown in table 1.

An attack based on a characteristic which is shorter by one round than the cryp-
tosystem is called a 1R-attack. Using 1R-attacks (w.l.g. we employ the notation of
an eight-round cryptosystem), we know 7" and A’ from the ciphertext and ¢’ and b’
from the characteristic. Also, H' = ¢’ @ [". We can verify that h' calculated by the
ciphertext equals the h' of the characteristic, and that A" — H'. The successfully
filtered pairs are used in the process of counting the number of times each possible
value of the last actual subkey is suggested, and finding the most popular value. Com-
plicating factors are the small number of bits set in A’ (which is a constant defined
by the characteristic), and the fact that many values of H' suggest many common
values of the last actual subkey. The signal to noise ratio of this process is

2% 66-2N
SIN = PN . g 2 :

The identification leaves

J = 22(]\771) . 2732 . 2719 — 22N753

wrong pairs for each right pair. Therefore, the right value of the last subkey is
counted with detectably higher probability than a random value up to N < 31 rounds.
A summary of the 1R-attacks on Feal-N appears in table 1, and shows that the
differential cryptanalysis is faster than exhaustive search up to N < 31.

Note that in both the 1R-attacks and the 2R-attacks we use octets (structures of
eight encryptions) with four characteristics (this is a special case in which an octet
can have four characteristics since Qb = QL ® Q% @ Q3%). These four characteristics
are the four possible rotations of the given characteristic. Thus, each octet gives rise

17

2R-attack 1R-attack

N || Prob | S/N | I |Pairs|Data ||Prob|S/N | I |Pairs|Data

8 2—12 239 2—18 214 213 2—14 250 2—37 217 216

9 2714 237 2716 216 215 2716 248 2735 219 218
10 2716 235 2714 218 217 2718 246 2733 221 220
11 2718 233 2712 220 219 2720 244 2731 223 222
12 2—20 231 2—10 222 221 2—22 242 2—29 225 224
13 2—22 229 2—8 224 223 2—24 240 —27 227 226
14 2—24 227 2—6 226 225 2—26 238 2—25 229 228
15 2726 225 274 228 227 2728 236 2723 231 230
16 2728 223 272 230 229 2730 234 2721 233 232
17 2—30 221 1 232 231 2—32 232 2—19 235 234
18 2—32 219 22 234 233 2—34 230 2—17 237 236
19 2—34 217 24 236 235 2—36 228 2—15 239 238
20 2736 215 26 238 237 2738 226 2713 241 240
21 2738 213 28 240 239 2740 224 2711 243 242
29 2740 211 210 242 241 2742 222 279 245 244
23 2—42 29 212 244 243 2—44 220 2—7 247 246
24 2—44 27 214 246 245 2—46 218 2—5 249 248
25 2746 25 216 249 248 2748 216 273 251 250
26 2748 23 218 252 251 2750 214 271 253 252
27 2750 9 220 255 254 2752 212 21 255 254
28 2—52 2—1 222 258 257 2—54 210 23 257 256
29 2—54 2—3 224 2—56 28 25 259 258
30 2756 2758 26 27 261 260
31 2758 2760 24 29 264 2_63
32 2760 2762 22 211 267 266

to 16 pairs (rather than four) which greatly reduces the required number of chosen
plaintexts. In both kinds of attacks there are two indistinguishable bits at each of the
last two actual subkeys. The attacking program should try all the 16 possible values

Table 1. Attacks on Feal-N.

of these bits when analyzing the earlier subkeys.

5 Differential Cryptanalytic Known Plaintext At-

tacks

Differential cryptanalytic attacks are chosen plaintext attacks in which the plaintext
pairs can be chosen at random as long as they satisfy the plaintext XOR condition.
Unlike other chosen plaintext attacks, differential cryptanalytic attacks can be easily

converted to known plaintext attacks by the following observation.

18

Cryptosystem | Number of | Number of | Number of
pairs of chosen known
one char | plaintexts | plaintexts

Feal-4 4 8 2335

Feal-8 1000 2000 2375

Feal-12 220 221 2425

Feal-16 228 229 246.5

Feal-20 236 237 250-5

Feal-24 244 245 2545

Feal-28 255 256 260

Feal-30 259 260 262

Feal-31 262 263 203-5

DES-6 120 240 236

DES-8 25000 50000 240

DES-9 225 226 245

DES-10 234 235 249.5

DES-11 235 236 250

DES-12 242 243 253.5

DES-13 243 244 254

DES-14 250 251 257.5

DES-15 251 252 258

Table 2. Known plaintext attacks on Feal and DES.

Assume that the differential cryptanalytic chosen plaintext attack needs m pairs,

and that we are given 232 . /2m random known plaintexts and their corresponding

32, 2
ciphertexts. Consider all the @ = 264.m possible pairs of plaintexts they can

form. Each pair has a plaintext XOR which can be easily calculated. Since the block

size is 64 bits, there are only 2% possible plaintext XOR values, and thus there are
4
about 2626;{” = m pairs creating each plaintext XOR value. In particular, with high

probability there are about m pairs with each one of the several plaintext XOR values
needed for differential cryptanalysis.

The known plaintext attack is not limited to the electronic code book (ECB) mode
of operation. In particular, the cipher block chaining (CBC) mode can also be broken
by this attack since when the plaintexts and the ciphertexts are known, it is easy to
calculate the real input of the encryption function.

Table 2 summarizes the differential cryptanalytic known plaintext attacks on Feal
and DES. For each of the listed cryptosystems with the listed number of rounds,
the table describes the number of pairs of each characteristic and the total number of
random plaintexts needed for the chosen plaintext attack and for the known plaintext
attack.

19

iwv|—>| H |—| H |—| H |—»| H |—>| H |—>| H |—> Output

Figure 2. Outline of N-Hash.

6 Cryptanalysis of N-Hash

N-Hash([8] is designed as a cryptographically strong hash function which hashes mes-
sages of arbitrary length into 128-bit values. The messages are divided into 128-bit
blocks, and each block is mixed with the hashed value computed so far by a random-
izing function g. The new hashed value is the XOR of the output of the g-function
with the block itself and with the old hashed value. The g-function contains eight
randomizing rounds, and each one of them calls the F' function (similar to the one of
Feal) four times. A graphic description of N-Hash is given in figures 2, 3, and 4.

Breaking a cryptographically strong hash function means finding two different
messages which hash to the same value. In particular, we break N-Hash by finding
two different 128-bit messages which are hashed to the same 128-bit value. Since the
output of the g-function is XORed with its input in order to form the hashed value,
it suffices to find a right pair for a characteristic of the g-function in which Qp = Q7.
After XORing the input with the output of the g-function, the hashed value XOR
becomes zero and thus the two messages have the same hashed value.

The following characteristic is a three-round iterative characteristic with proba-
bility 27'6 (N-Hash does not swap the two halves after each round since the swap
operation is part of the round itself. Therefore, the concatenation of the characteris-
tic Q! with the characteristic Q? is possible whenever Q. = Q% without swapping).
In the description of this characteristic we refer to the value 80 60 80 00, as » and
to the value 80 E0 80 00, as . Note that both 1) — (¢ @ ¢) and ¢ — (¢ @ p) with
probability i by the F' function. The behavior of the XORs in the F' function in this
characteristic is similar to their behavior in the iterative characteristic of Feal. The
characteristic itself is based on the input XOR:

QP = (¢7 'l/), 07 0)
With probability ﬁ the data XOR after the first round is
(0,0, ¢,).
With probability ﬁ the data XOR after the second round is

(w) ,QZ}7 807 80)'

20

X, X X X

s
!

Vs Y, Y Y, Y.
o PS b o
S RS
A
pany
T

Jo i | b /3

ko~
k; D
k, D
ks D
W4A) Me
UV NP
Y
S I <
\
> SO
Y \ 4
SO < > S bi
l v \i l
Fy F, v F F;

Figure 4. The F function of N-Hash.

21

Number of Rounds | Complexity
3 28
6 224
9 240
12 256
15 272

Table 3. Results of the attack on N-Hash.

The data after the third round is always

QT = QP - (wﬂ/),o: 0)
Therefore, the probability of the characteristic is 2716,

A pair of messages whose XOR equals Qp has probability (2716)* = 2732 to have
Qr as its output XOR after the sixth round of the g-function, and thus to have
the same hashed value after their inputs and outputs are XORed by the six-round
variant of N-Hash. Instead of trying about 232 random pairs of messages we can
choose only pairs from a smaller set in which the characteristic is guaranteed to be
satisfied in the four F' functions of the first round. The pairs in this set are chosen
by the following algorithm. For each F' function in the first round we search a priori
a list of input pairs for which the input XOR and the output XOR are as expected
by the characteristic. To get a new pair we choose a random input pair for each F
function and from the four input pairs and their corresponding outputs we deduce
the two messages backwards. Therefore, the probability in this set is increased by a
factor of 256, and only about 22* such pairs have to be tested in order to find a pair
of messages which hash to the same value.

This specific attack works only for variants of N-Hash whose number of rounds is
divisible by three. Table 3 describes the results of this attack. We can see from the
table that this attack is faster than the birthday attack (whose complexity is 264) for
variants of N-Hash with up to 12 rounds.

The attack on N-Hash with six rounds was implemented on a personal computer
and the following pairs of messages (as well as many others) were found within about
two hours:

e — CAECE595 127ABF3C 1ADE09C8 1F9AD8C2
4A8C6595 921A3F3C 1ADE0O9C8 1F9AD8C2
Common hash value: 12B931A6 399776B7 640B9289 36C2EF1D

e — b878BE49 F2962D67 30661E17 OC38F35E
D8183E49 72F6AD67 30661E17 OC38F35E
— Common hash value: 29BOFE97 3D179EOE 5B147598 137D28CF.

22

7 Cryptanalysis of Feal-4

Feal-4 is breakable by a chosen plaintext attack which uses eight ciphertexts and the
plaintext of one of them. We keep the notation used in the attack on Feal-8. Note
that the attack described here really breaks an extension of Feal-4 whose all subkeys
are 32-bit long.

We use the following two-round characteristic with probability 1 (for which P' =
80 80 00 00 80 80 00 00,):

< 2p =80 80 00 00 00 00 00 00, >

!

a =0 always

M

™
=
I
]

< F <

Y. B'=0200 00 00, i =80 80 00 00, always

F |«

™
y

!

< Qp =02 00 00 00 80 80 00 00,. >

A right pair with respect to this characteristic (and therefore any pair with this
plaintext XOR P’) satisfy
¢ =02 00 00 00,.

From the other direction

d=rol.
Thus,
C' = dobt=r"al ®80 80 00 00,
D' = l'ed=1®0200 00 00,.

The last actual subkey of this cryptosystem is AK3. Given the value of AK3 the
value of D can be calculated for any ciphertext. For each possible value of AK3 we
count the number of pairs for which D’ calculated above from the characteristic equals
D’ calculated using AK3 and for which ¢ — C’. The value of AK3 which is counted
by all the pairs must be the right value. There is only a small probability that more
than one such value is counted by all the pairs using four pairs. This counting can be
done with complexity 2'¢ by counting the possible values of mx(AK3), comparing D’
and then counting the values of AK3 whose mx(AK3) is as found in the first step.

23

Given AK3 we can reduce the cryptosystem to three rounds. For each possible
value of AK2 we count the number of pairs whose values of C’ from both directions
are equal using another characteristic. The value which is counted by all the pairs is
the real value of AK2. Similarly we find AK1 and AKQ using other characteristics.
The value of the actual subkey used in the initial transformation is easily found using
the given plaintext.

In the search for AK2 we use a one-round characteristic with probability 1 which
cannot be extended to two rounds with probability 1, since otherwise the input XOR,
of the third round would be constant for all the pairs. In the search for AK1 and
AKO we use pairs with random plaintext XORs. All the plaintext XORs needed can
be obtained by a structure of eight encryptions.

8 A Known Plaintext Attack on Feal-4

This known plaintext attack is based on the property of the addition operation that
there is a fixed pattern of carry bits which is generated when many pairs of eight-bit
numbers are added together. This carry type depends on the additional constant
which is added to the sum. A similar attack is applicable to Feal-5.

Definition 2 Let X and Y be eight-bit variables
and let 7 be an eight-bit constant. The carry type of the sum X +Y + i is defined to
be (X +Y +i (mod256))® (X @Y @i). The carry type of the sum X +Y is an
abbreviation of the carry type of the sum X +Y + 0.

Note that the carry types always end with a zero.
The following lemma derives the main properties of carry types:

Lemma 1 Let X and Y be eight-bit numbers. Then:

7
1. A fraction of (%) ~ % of all the sums X + Y have carry type 0.

7
2. A fraction of (%) ~ == of all the sums X + Y + 1 have carry type FE,.

7

3. A fraction of (%) ~ 2—17 of all the pairs of sums X; + Y; and X, + Y5 have the
same carry type for both sums. The same fraction holds for the sums X;+Y;+1
and Xy + Y5 + 1.

Proof 1. (X+Y)®X@Y =0ifforanyje{0,...,6} either X; =0o0rY,; =0.

If X; =Y; =1 there is a carry from bit j to bit j 4+ 1. Therefore, for each bit,
1

in three out of four cases there is no carry and the total fraction is (2)" ~ L.

24

2. (X+Y+1)eXeY®l=FE,if forany j € {0,...,6} either X; =1 or
Y; = 1. If X; =Y, = 0 there is no carry from bit j to bit j + 1. Therefore,
for each bit, in three out of four cases there is a carry and the total fraction is

3\7 o L
(9" = 75

3. If the two carry types are equal then any bit which has a carry in one addition
has a carry in the other and any bit which does not have a carry in one addition,

. .y 3 3 1 1 _ 10
has no carry in the other. The probability for one bit to satisfy it is $-5+77 = 1¢

16
and the total fraction is (13)" = 5.

For each encryption with plaintext P and ciphertext T the value of A®C'is known
up to a XOR with a key dependent value by

APC=LOKLOI®KIDdrdKr.

where (KL, KR) are the subkeys XORed with the plaintext during the encryption
process and (K1, Kr) are the subkeys XORed with the ciphertext. Lets concentrate

on
Ao@CO:Lo@KLO@lo@Klo@TO@KTO.

Ap and Cy are

AO = S()(a(), Al) = ROL2(CLO + Al)
C() == S()(CU, Cl) = ROL2(00 + Ol)

ap + Ay and ¢y + C have the same carry type Z with probability about 2% In this
case

AO = ROL2(CLO@A1@Z>
C() = ROLQ(C()@OIEBZ)

and
Ay Cy = ROL2(apd A1 70 Ci27) =

= ROL2(CLO D A1 D Co D Cl)
The value A; @& C; is known up to the key by
ACi=LioKLioh oKl ®&r @ Kry

and ay is just
ay = Lo ® KLy & Ry ® KRy.
Thus,
LoD KLy®lyd Kly®rgd Kry =
ROL2(Ly ® KLy ® Ry ® KRy ® ¢y ®
LidKLi®olh®Kli®r & Kr).

25

Extracting cy:

On the other hand:

C()EBDO

co = Lo®RyDL1 DL Dr @
ROR2(Ly ® 1y ® o) D
KLy KRy KL Kl ® Kry &
ROR2(K Lo ® Kly ® Kro).

lo ® Kl

So(do, Dy) = ROL2(dy + D)

S1(do ® dy & Kdo,dy ® d3y & K4y) =
ROL2((dy @ dy ® K4p) + (do ® d3 & K4,) + 1)

with probability about %:

Dy

ROL2(dy & D)

and with probability about %

where for i € {0, ...

d;
Thus,
Co

ROL2(dy® dy ® dy® d3s & K4y K4, & FF),)

,3}

Dy®ly® Kly =

ROL2(dy ® D) ® Iy & Kly =

FF, ®ly® Kly®ROL2(lp @ 1o ® Kly ® Kro) &

ROLA(lp® 1 L@ l3DroDri Drodr3d

Ky Kl ©Kla ® Kls ® Krg ® Kry @ Kro @ Krs @

K4y & K4,). (4)

By equating equations 2 and 4 and dividing the variables into key variables K¢

2
and plaintext/ciphertext variables Ec we get with probability about 2—17 . (7—15) :

where

K¢

K¢

= FE¢

= Kl KLy KRy KL Kl ® Kr &

ROR2(K Ly ® Kly ® Kro) @

ROL2(Kly @ Kro) ®

ROR4A(Kly® Kl) & Klo @ Kl3 @

Kro® Kri® Kry ® Krs @ K49 @ K4,)

= FF,@lyd LoD Ry®Li®lidr @

ROR2(Ly ® ly ® o) ®

ROL2(ly & 19) &

ROLA(lg® 1 @l @3 Dro® 11 D ro P r3).

26

K¢ is a constant depending on the key only. E¢ can be calculated for every plain-
text/ciphertext pair. The probability that Ec = K¢ for a plaintext/ciphertext pair
is greater than 1/256, since the probability we calculated is added to the probability
of random occurrence. In addition, other carry phenomena cancel each other and
increase the probability of this case. It is possible to prove the following:

e The probability of Ec = K¢ in a random plaintext/ciphertext pair is about
1/220.

e Given about 100000 plaintext/ciphertext pairs we can count the number of
occurrences of each possible value of E- and with a high probability the most
frequent value is the value of K.

The value of K¢ does not provide any practical knowledge about the key. However,
using K we can filter the data leaving only those encryptions satisfying Ex = K.
This filtration enrich the fraction of the plaintext/ciphertext pairs which have a zero
carry type at the corresponding S boxes. If the carry type is zero in the S box
outputting D;:

i.e., by equation 3

(lodro@h®ri®Klg® Kro® Kly & Kry © K4y)
lLbdrdl;drdKhd Krod Kl Krs® K4,) +1 =

= [®rdhor®L®rdldr (5)
Ky Kro Kl Kri® Kly® Kro® Klsd Kra
K4, K4, @ FF,

+

S¥
@
Trying all the 2'6 possibilities of

KZUEBKT(]@KZI EBKTl @K40

and
KlQ@KTQ@Kl3@KT3@K41

we count the occurrences of the values satisfying equation 5. The value that occurs
most often is likely to be the real value. One bit is indistinguishable and for the
others we need much more data than in the caes of K. However, the XOR of these
two values is usually the right value of their XOR.

Using those pairs we know D; (assuming the carry type is F'E,) and can assume
a zero carry type in Dy = Sp(dp, D;) to find more key bits. Similar calculations can
then find all the bits of the last actual subkey. The other actual subkeys can be found
with much better identification after the reduction to a smaller number of rounds.

27

The attacking program finds the actual subkeys in less than two minutes on a
personal computer using 100000 known plaintexts/ciphertext pairs. The program
uses 250K bytes of memory.

A Other Properties of Feal

In this appendix we describe several properties of Feal which are not described else-
where in this paper.

1. The F function is partially invertible: Given the value Y = F(X, K) we can
find all the internal values inside the F' function and half of the actual input
bytes by:

Xo = 5'(Yo, 1)

X = S7'(Y3,Y2)
HOK = XH0X;0K =S5 (V,1)
X,0K) = Xp8X,0K,=57"(Y1,[Xy® K]).

2. The F}, function of the key processing algorithm is partially invertible: Let
Z = Fp(X,Y). Then, given any three values out of Z,, Z3, X3, Y3, the fourth
value is easily calculated using the formula:

Zy=51(X5,Z,®Y3).

In particular,
Z3o=X30D Loy DY30D1

since S is linear in the least significant bit of the addition operation.

3. The following equation of the subkeys is satisfied by Feal-8:
Kefso ® Kedso = Keds g ® Kefoo ® Kedag @ K71
or in other writing, by the actual subkeys:
AKT39 = AK630 ® AK 7.

Therefore, given the value of AKY7, it is easy to calculate the value of the bit
AK630. This property is used to discard wrong values of AK6 during the search
for the actual subkeys.

4. The key processing algorithm of Feal-8 yields 256 subkey bits, of which 32 bits
are redundant. Only 224 bits are needed during the encryption/decryption

28

processes. They are:

K0l = KOo® Ked

K1t = Kl®Kedo Kef
K2! = K2@ Ked

K3' = K3®Kcdo® Kef
K4t = K4® Ked

K5t = K5® Ked® Kef
K6' = K6® Ked

K7 = Ki®Kcd® Kef
K89" = K89@®am(Ked® Kef)
Kab! = Kab® am(Kef)
Ked' = (Kedy, 0,0, Keds)
Kefl = (Kefy,0,0, Kefs)

where for any 32-bit X, X is the 16-bit value of its two middle bytes (i.e.,
(X1, X3)). The encryption and decryption using the new values of the subkeys
give the same results as with the original values. Another equivalent description
of the subkeys is denoted by the actual subkeys in which the subkeys of the
rounds are extended to 32 bits and the subkey of the final transformation is
eliminated.

. The following property can be used to decide if some input XOR value may
cause some output XOR value by the F' function and to find real values of bits
by the input XOR and the output XOR. The decision is done in parallel for
each S box in the F' function.
Let Z = S;(X,Y) and Z* = S;(X*,Y™*). The lowest bit in the addition operation
satisfy

Zy=X; @Y.

Let C' be the byte of carries in the addition operation (X +Y +4) (mod 256)
in S;, defined as C = (X +Y +4 (mod 256)) ® X @Y (i (which is either zero
or one) is interpreted here as a carry into the least significant bit). Cj; is the
carry bit passed from the (j — 1)* bit of the addition in S; to the j* bit. Thus,

. . . 1, ifXjfl—Fijfl—i‘OjleQ;
V]G{l,...,?}. Cj_{O, ifXj_1+Y}'_1+Cj_1§1

and C7 is the value of C; ® C}. Co = i and thus the value of (Y is always zero.
Let W be defined as ROR2(Z) = (X +Y +i) (mod 256). Then,

C=WeXaY
and C' is easily calculated from the input XORs and the output XOR by
C'=WeoXaY.

29

X; Y] Ch=1 Ci=0
00 X;j0Y; =0),," Cl =0
0 1 Y}-@C}-:C}.ﬂ@l XjEBCjZC}+1T
1o | Xjec=C @1 Vi@ ;=i
1|1 Ca=U\WelC=X;9Y,=C_ ol

Table 4. Possible known values given the XORs in pairs.

The combination of the values of X}, Y], C% and C},, (for j € {0,...,6})
can derive some new knowledge. For example, assume that X]’ = Yj' = 0 and
C% = 1 and study the two possibilities of C?,,. If C7,; = 0 then either (1)
X;j+Y;+C; < land Xj+Y/+C; <1 and thus X; =Y =0, or (2)
Xj+Y;+C; > 2and X7+ Y+ C; > 2 and thus X; = Y; = 1. In both
cases X; = Yj. If C,; = 1 then similarly X; # Y; and therefore in general
X;j@Y; = C},,. Table 4 generalizes this observation for all the combinations
of X7, Y/ and C}. The entries marked by * are particularly useful because they
can be used to identify wrong pairs. The entries marked by ' can be used to
derive the values of the bits X, and Y. The entries marked by ¥ can be used
to derive the value of X; @ Y and the value of Z, (Wy).

The F' function contains four S boxes. Some input bytes are used as inputs to
two S boxes and the output bytes of some S boxes are used as inputs to other
S boxes. By combining the knowledge obtained from the four S boxes we can
find contradictions on the values of bits, or calculate by one S box the value of
bits needed in another S box.

References

[1] Eli Biham, Adi Shamir, Differential Cryptanalysis of DES-like Cryptosystems
(extended abstract), Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of CRYPTO’90, pp. 2-21, 1990.

(2] Eli Biham, Adi Shamir, Differential Cryptanalysis of DES-like Cryptosystems,
Journal of Cryptology, Vol. 4, No. 1, pp. 3-72, 1991.

[3] Bert Den-Boer, Cryptanalysis of F.E.A.L., Lecture Notes in Computer Science,
Advances in Cryptology, proceedings of EUROCRYPT’88, pp. 293-300, 1988.

[4] Walter Fumy, On the F-function of FEAL, Lecture Notes in Computer Science,
Advances in Cryptology, proceedings of CRYPTO’87, pp. 434, 1987.

[5] Henry Gilbert, Guy Chasse, A Statistical Attack on the FEAL-8 Cryptosystem,
Lecture Notes in Computer Science, Advances in Cryptology, proceedings of
CRYPTO’90, pp. 22-33, 1990.

30

(6] Shoji Miyaguchi, FEAL-N specifications, technical note, NTT, 1989.

[7] Shoji Miyaguchi, The FEAL cipher family, Lecture Notes in Computer Science,
Advances in Cryptology, proceedings of CRYPTO’90, pp. 627-638, 1990.

18] S. Miyaguchi, K. Ohta, M. Iwata, 128-bit hash function (N-Hash), proceedings
of SECURICOM’90, pp. 123-137, March 1990.

9] Shoji Miyaguchi, Akira Shiraishi, Akihiro Shimizu, Fast Data FEncryption
Algorithm FEAL-8, Review of electrical communications laboratories, Vol. 36,
No. 4, pp. 433-437, 1988.

[10] Sean Murphy, The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts, The
Journal of Cryptology, Vol. 2, No. 3, pp. 145-154, 1990.

[11] National Bureau of Standards, Data Encryption Standard, U.S. Department of
Commerce, FIPS pub. 46, January 1977.

[12] Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm FEAL,
Lecture Notes in Computer Science, Advances in Cryptology, proceedings of
EUROCRYPT’87, pp. 267-278, 1987.

[13] Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm FEAL,
Abstracts of EUROCRYPT’87, pp. VII-11-VII-14, April 1987.

31

