
Di�erential Cryptanalysis of Feal and N�Hash

Eli Biham Adi Shamir

The Weizmann Institute of Science
Department of Applied Mathematics and Computer Science

Rehovot ������ Israel

Abstract

In ����� we introduced the notion of di�erential cryptanalysis and described
its application to DES���� and several of its variants� In this paper we show the
applicability of di�erential cryptanalysis to the Feal family of encryption algo	
rithms and to the N	Hash hash function� In addition� we show how to transform
di�erential cryptanalytic chosen plaintext attacks into known plaintext attacks�

� Introduction

Feal is a family of encryption algorithms� which are designed to have simple and
e�cient software implementations on eight�bit microprocessors	 The original member
of this family� called Feal�
���� had four rounds	 This version was broken by Den
Boer�� using a chosen plaintext attack with ��� to ����� ciphertexts	

The designers of Feal reacted by creating a second version� called Feal������� in
which the number of rounds was increased to eight� while the F function was not
changed	

Feal�� was broken by the di�erential cryptanalytic chosen plaintext attack de�
scribed in this paper	 As a result� two new versions were added to the family� Feal�
N�� with any even number N of rounds� and Feal�NX�� with an extended ����bit
key	 In addition� The designers proposed a more complex eight�round version called
N�Hash�� as a cryptographically strong hash function which maps arbitrarily long
inputs into ����bit values	

Recently� two chosen plaintext attacks on Feal were published	 The one analyses
Feal�� using ����� encryptions��	 This attack is partially derived from the attack
described in this paper	 The other analyses Feal�
 using �� encryptions���	

�



The main results reported in this paper are as follows� Feal�� is breakable under
a chosen plaintext attack with ���� ciphertexts	 Feal�N can be broken faster than
via exhaustive search for any N � �� rounds� and Feal�NX is just as easy to break as
Feal�N for any value of N 	 The di�erential cryptanalytic chosen plaintext attacks can
be transformed into known plaintext attacks which can be applied even in the CBC
mode of operation� provided we have su�ciently many known plaintext�ciphertext
pairs �about ��� in the case of Feal���	 Variants of N�Hash with up to �� rounds
can be broken faster than via the birthday paradox� but for technical reasons we can
apply this attack only when the number of rounds is divisible by three	 Feal�
 is
trivially breakable with eight chosen plaintexts or via a non�di�erential attack with
about ������ known plaintexts	

� Di�erential Cryptanalysis of Feal

The notion of di�erential cryptanalysis and its application to DES�like cryptosystems
are described in ����	 The basic tool of di�erential cryptanalytic attacks is a pair of
ciphertexts whose corresponding plaintexts have a particular di�erence	 The method
analyses many pairs with the same di�erence� assigns probabilities to the di�erent
possible keys and locates the most probable key	 For Feal the di�erence is chosen as
a particular XORed value of the two plaintexts	

In this paper we use the notation introduced in ���� with additional Feal�speci�c
notation�

nx� An hexadecimal number is denoted by a subscript x �i	e	� ��x � ���	

X�� X �� At any intermediate point during the encryption of pairs of messages� X
and X� are the corresponding intermediate values of the two executions of the
algorithm� and X � is de�ned to be X � � X �X�	

P � T � The plaintext and the ciphertext	 Unlike in DES� they denote the real plaintext
and ciphertext without ignoring the initial and �nal transformations	 Thus� the
characteristic�s input XOR �P is di�erent from the corresponding plaintext
XOR P �	 Note that the de�nitions in ���� assume that P denotes the value
after the initial transformation rather than the real plaintext	

�L�R�� The left and right halves of the plaintext P are denoted by L and R respec�
tively	

�l� r�� The left and right halves of the ciphertext T are denoted by l and r respectively	

a� � � � � h� The ���bit inputs of the F function in the various rounds	 See �gure �	

A� � � � � H� The ���bit outputs of the F function in the various rounds	 See �gure �	
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Figure �� The outline of Feal�� and the F function	

ROLn�X�� RORn�X�� Rotation of the byte X by n bits to the left and to the right
respectively	

Si�x� y�� The Feal S boxes� Si�x� y� � ROL��x � y � i �mod �����	

Xi� The ith byte of the ��� �� or �
�bit X or the ith bit of the byte X	

Xi�j� The jth bit of Xi �where � is the least signi�cant bit�	

am�K�� The ���bit value ��� K�� K�� �� where K is ���bit long	

mx�X�� The ���bit value �X� �X�� X� �X�� where X is ���bit long	

�� The exclusive�or operator	

The structure of Feal �see �gure �� is similar to the structure of DES with a new
F function and modi�ed initial and �nal transformations	 The F function of Feal
contains two new operations� byte rotation which is XOR�linear and byte addition
which is not XOR�linear	 The byte addition operation is the only non�linear operation
in Feal and therefore the strength of Feal crucially depends on its non�linearity	 At
the beginning and at the end of the encryption process the right half of the data is
XORed with the left half of the data and the whole data is XORed with additional
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subkeys� rather than permuted as in DES	 Due to their linearity� these XORs pose
only minor di�culty to our attack	

The addition operations in the S boxes are not XOR�linear	 However� there is still
a statistical relationship between the input XORs of pairs and their output XORs	
A table which shows the distribution of the input XORs and the output XORs of an
S box is called the pairs XOR distribution table of the S box	 Such a table has an
entry for each combination of input XOR and output XOR� and the value of an entry
is the number of possible pairs with the corresponding input XOR and output XOR	
Usually several output XORs are possible for each input XOR	 A special case arises
when the input XOR is zero� in which case the output XOR must be zero as well	 We
say that X may cause Y �denoted by X � Y � if there is a pair in which the input
XOR is X and the output XOR is Y 	 We say that X may cause Y with probability
p if for a fraction p of the pairs with input XOR X� the output XOR is Y 	

Since each S box has �� input bits and only eight output bits it is not recommended
to use the pairs XOR distribution tables directly	 Instead� in the �rst stage of the
analysis we use the joint distribution table of the two middle S boxes in the F function
�inside the gray rectangle in �gure ��	 This combination has �� input bits and ��
output bits� and the table has many interesting entries	 For example� there are two
entries with probability � which are �� ��x � �� ��x and �� ��x � �� ��x	 About ���
of the entries are impossible �contain value ��	 The average value of all the entries
is �� but the average value of the possible entries is about ��	 In appendix A we
describe how we can easily decide if X � Y or not for given XOR values X and Y
without consulting the table	

The S boxes also have the following properties with respect to pairs� Let Z �
Si�X� Y �	 If X � � ��x and Y � � ��x then Z � � ��x always	 If X � � ��x and Y � � ��x
then Z � � ��x always	 For any input XORs X � and Y � of the S boxes the resultant
output XOR Z � � ROL��X � � Y �� is obtained with probability about �

���X�jY �� where
�X is the number of bits set to � in the lower seven bits of the byte X and j is the
or operator	 This happens because each bit which is di�erent in the pairs �X and
X�� or Y and Y �� gives rise to a di�erent carry with probability close to �

�
	 If all the

carries happen at the same bits in the pair then the equation is satis�ed	

The input of the F function in the last round is a function of the ciphertext XORed
with an additional subkey of the �nal transformation rather than just a function of
the ciphertext �as in DES�	 There is an equivalent description of Feal in which the
XOR with the subkeys in the �nal transformation is eliminated and the ���bit subkeys
XORed to the two middle bytes of the inputs of the F function in the various rounds
are replaced by ���bit values	

De�nition � The ���bit subkeys of the equivalent description in which the XOR
with the subkeys in the �nal transformation is eliminated are called actual subkeys	
The actual subkey which replaces the subkey Ki is denoted by AKi	 The ���bit
XOR combinations mx�AKi� � �AKi��AKi�� AKi��AKi�� are called ���bit actual






subkeys	 The actual subkey of the last round of a cryptosystem is called the last actual
subkey	

The actual subkeys in the even rounds i � � are
AKi � Kcd�Kef � am�Ki��

The actual subkeys in the odd rounds i � � are
AKi � Kcd� am�Ki��

The actual subkeys of the initial transformation are
AK�� � K���Kcd�Kef

AKab � Kab�Kef�

The actual subkeys of the �nal transformation are eliminated and thus their equiv�
alent values are zero	 Our attack �nds the actual subkeys rather than the subkeys
themselves since it �nds XORs of the ciphertexts and internal values in the F function	

A tool which pushes the knowledge of the XORs of pairs as many rounds as
possible is called a characteristic	 An n�round characteristic � starts with an input
XOR value �P and assigns a probability in which the data XOR after n rounds
becomes �T 	 Two characteristics �� and �� can be concatenated to form a longer
characteristic whenever ��

T equals the swapped value of the two halves of ��
P � and

the probability of � is the product of the probabilities of �� and ��	 A pair whose
intermediate XORs equal the values speci�ed by a characteristic is called a right pair
with respect to the characteristic	 Any other pair is called a wrong pair with respect
to the characteristic	 Note that in Feal� the plaintext XOR P � is di�erent from the
input XOR of the characteristic �P due to the initial and �nal transformations	

The simplest example of a one�round characteristic with probability � is�

�P � �L�� �x�

A� � �x a� � �x always

�T � �L�� �x�

F

This characteristic is similar to the one�round characteristic with probability � of
DES	 Unlike the case of DES� Feal has three other one�round characteristics with
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probability �	 A typical one is�

�P � �L�� �� �� �� ��x�

A� � �� �� �� ��x a� � �� �� �� ��x always

�T � �L� � �� �� �� ��x� �� �� �� ��x�

F

Three non�trivial three�round characteristics with probability � also exist	 The one
derived from the above one�round characteristic is�

�P � �� �� �� �� �� �� �� ��x

A� � �� �� �� ��x a� � �� �� �� ��x always

B� � � b� � � always

C � � �� �� �� ��x c� � �� �� �� ��x always

�T � �� �� �� �� �� �� �� ��x

F

F

F
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The following is a �ve�round characteristic with probability �
��

�

�P � A� �� �� �� �� �� �� ��x

A� � �� �� �� ��x a� � �� �� �� ��x always

B� � �� �� �� ��x b� � A� �� �� ��x with probability ��


C � � � c� � � always

D� � �� �� �� ��x d� � A� �� �� ��x with probability ��


E � � �� �� �� ��x e� � �� �� �� ��x always

�T � A� �� �� �� �� �� �� ��x

F

F

F

F

F

This �ve�round characteristic can be extended to a six�round characteristic with
probability �

���
� for which not all the bit di�erences at the left half of the data after
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the sixth round are �xed�

�P � A� �� �� �� �� �� �� ��x

A� � �� �� �� ��x a� � �� �� �� ��x always

B� � �� �� �� ��x b� � A� �� �� ��x with probability ��


C � � � c� � � always

D� � �� �� �� ��x d� � A� �� �� ��x with probability ��


E � � �� �� �� ��x e� � �� �� �� ��x always

F � � XY �� �� �Zx f � � A� �� �� ��x with probability ���

�T � WY �� �� �Z A� �� �� ��x

F

F

F

F

F

F

where the values of X� Y � Z and W can range �for di�erent right pairs� over X �
f�� �� �� �� A� B�D�E� Fg� Y � f�� A� Bg� Z � f�� �� �g and W � X � �	 There is
another �ve�round characteristic with probability �

��
which has a similar extension to

six rounds	

Among the most useful characteristics are those that can be iterated	 A charac�
teristic � is called an iterative characteristic if the swapped value of the two halves
of �P equals �T 	 The iterative characteristics of Feal do not include one in which
a non�zero input XOR of the F function may cause a zero output XOR since the
F function is reversible� but there are other kinds of iterative characteristics	 The
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following is an iterative characteristic which has probability �
�

for each round�

�P � �� �� �� �� �� �� �� ��x

A� � �� �� �� ��x a� � �� �� �� ��x with probability ��


B� � �� �� �� ��x b� � �� E� �� ��x with probability ��


C � � �� �� �� ��x c� � �� E� �� ��x with probability ��


D� � �� �� �� ��x d� � �� �� �� ��x with probability ��


�T � �� �� �� �� �� �� �� ��x�

F

F

F

F

Given a su�ciently long characteristic and a right pair we can calculate the output
XOR of F function in the last round	 The inputs themselves of this F function are
known from the ciphertexts up to a XOR with subkeys	 For any possible value of the
last actual subkey� we count the number of possible pairs for which the output XOR is
as expected	 Every right pair suggests the right value of the actual subkey	 The wrong
pairs suggest random values	 Since the right pairs occur with the characteristic�s
probability� the right value of the actual subkey should be counted more often than
any other value	 Therefore� it can be identi�ed	

The number of pairs needed for a di�erential cryptanalytic attack depends on the
characteristic�s probability� on the number of subkey bits counted and on the level of
identi�cation of the right key	 The ratio between the number of right pairs and the
average count in a counting scheme is called the signal to noise ratio of the counting
scheme and is denoted by S�N 	 The signal to noise ratio of a counting scheme is

S�N �
�k � p
� � �

where k is the number of subkey bits which are counted in �k counters� p is the
characteristic�s probability� � is the average count per counted pair and � is the
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fraction of the counted pairs among all the pairs	 The value of the signal to noise
ratio indicates how many right pairs are needed to the attack and thus the total
number of pairs needed	 If the signal to noise ratio of a counting scheme is high only
few pairs are needed	 If the signal to noise ratio is low many right pairs are needed	
If the signal to noise ratio is too low the attack may become impractical	

� Cryptanalysis of Feal��

This di�erential cryptanalytic chosen plaintext attack on Feal�� uses about ���� pairs
of ciphertexts whose corresponding plaintexts are chosen at random satisfying P � �
A� �� �� �� �� �� �� ��x	 This plaintext XOR is motivated by the following six�round
characteristic whose probability is ������ for which not all the bits of �T are �xed�

�P � A� �� �� �� �� �� �� ��x

A� � �� �� �� ��x a� � �� �� �� ��x always

B� � �� �� �� ��x b� � A� �� �� ��x with probability ��


C � � � c� � � always

D� � �� �� �� ��x d� � A� �� �� ��x with probability ��


E � � �� �� �� ��x e� � �� �� �� ��x always

F � � XY �� �� �Zx f � � A� �� �� ��x with probability ���

�T � WY �� �� �Z A� �� �� ��x

F

F

F

F

F

F
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where the values of X� Y � Z and W can range �for di�erent right pairs� over
X � f�� �� �� �� A� B�D�E� Fg� Y � f�� A� Bg� Z � f�� �� �g and W � X � �	

Five shorter characteristics are derived from the �rst rounds of this six�round char�
acteristic	 Each characteristic has a di�erent number of rounds but all of them have
the same value of �P 	 The one�round characteristic which is derived from the �rst
round of the six�round characteristic has probability �	 The two�round characteristic
which is derived from the �rst two rounds has probability ��
	 The three�round char�
acteristic also has probability ��
	 The four�round and the �ve�round characteristics
have probability ����	

��� Reducing Feal�� to seven rounds

In order to �nd the last actual subkey we do the following	 Given the ciphertexts T
and T � of a right pair� we can deduce�

g� � WY �� �� �Zx

h� � l� � r�

G� � f � � h� � A� �� �� ��x � l� � r�

H � � l� � g� � l� �WY �� �� �Zx�

Therefore� all the bits of h� and G� and �
 bits of each of g� and H � are known	

The counting method is used to �nd the ���bit last actual subkey	 Filtering can
be done by the knowledge of bits in the other two bytes of H � and in the seventh
round	 Assuming g� � G� we can reverse calculate the values of g�i�� from G� by

g���� � G�
��� �G�

���

g���� � G�
��� �G�

���

g���� � G�
��� �G�

��� � g����
g���� � G�

��� � g���� � g���� � g����

and verify that the two known bits g���� and g���� from the characteristic are the same	
About �

�
of the wrong pairs are discarded by this veri�cation	 We can also discard

about �
�

of the other wrong pairs for which g� �� G�	 Assuming h� � H � we can verify
the four bits of H �

i�� by

H �
��� � H �

��� � h����
H �

��� � h���� � h���� � h���� � h����
H �

��� � H �
��� � h���� � h����

H �
��� � H �

��� � h�����

This veri�cation discards about ��
��

of the remaining wrong pairs	
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All the right pairs must be veri�ed correctly	 Only about �
�
� �
�
� �
��

� �
���

of
the wrong pairs should pass the three �lters	 Since the right pairs occur with the
characteristic�s probability of �

���
� most of the remaining pairs are right pairs	

The counting scheme counts the number of pairs for which each value of the ���bit
last actual subkey mx�AK�� is possible	 The expected signal to noise ratio is

S�N �
��� � ��	

�
�
� �
�
� �
�
� � � ����

This ratio is so high that only eight right pairs are typically needed for the attack�
and thus the total number of pairs we have to examine is about � � ��� � ����	 Note
that we cannot distinguish between the right value of the ���bit actual subkey and
the same value XORed with �� ��x	 Therefore� we �nd two possibilities for the ���bit
last actual subkey	

The following counting scheme is used to complete the last actual subkey	 For this
counting scheme the �ve�round characteristic with probability ���� su�ces	 For each
pair �out of all the pairs� we calculate �H and �H� and get �H � where for any ���bit
X� �X is the ���bit value of its two middle bytes �i	e	� �X�� X���	 Then we calculate
�g� � �l� � �H �� �F � � �e� � �g� and few other bits of g� and discard any pair for which we
can conclude that g� �� G� by the F function using the bits we have found	

We try the ��� possibilities for the lowest seven bits of AK��	 For each value we
calculate H�� H

�
� � H �

� � H� �H�
� and F �

� � e�� �H �
� � l�� and verify that f �� �from the

characteristic� and F �
� �from �F �� may cause this F �

�	 We count the number of the pairs
satisfying this condition	 The value of AK�� which is counted most often is likely
to be the right value	 We cannot distinguish the upper bit of the value� so we try
just ��� possibilities �instead of ��� as was expected� and then try the two possible
values in the following steps� till the wrong one fails	 In a similar way we �nd seven
bits of AK��	 As a result� we �nd eight possibilities for AK� and we can reduce the
cryptosystem to a seven�round cryptosystem	

��� Reducing the seven�round cryptosystem to six rounds

We assume that the last actual subkey is already known� so the cryptosystem can be
reduced to a seven�round cryptosystem	 A right pair with respect to the �ve�round
characteristic with probability ���� satis�es

f � � A� �� �� ��x

g� � l� �H �

G� � h� � f � � h� � A� �� �� ��x

F � � e� � g� � l� �H � � �� �� �� ��x�

We verify that f � � F � and g� � G� and count in two steps� the �rst step counts
on the ���bit actual subkey and the second step counts on each one of the other two
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bytes	 The signal to noise ratio of the �rst step which �nds the ���bit actual subkey
mx�AK�� is

S�N �
���

�� �
�
�
	

�� � ��
	

�� � �
� ��
�

The signal to noise ratio of the second step which �nds AK�� and AK�� is

S�N �
��

�� �
�
�
	

�� � ���� � �
� ����

In the �rst step one bit is indistinguishable and in the second step two bits are
indistinguishable	 Therefore� we try all the eight possibilities of AK� in parallel in
the following steps	

In total we �nd at most �
 possibilities for the last two actual subkeys and can
thus reduce the cryptosystem to six rounds	

��� Reducing the cryptosystem to �� 	� �� � and � rounds

Using the last two actual subkeys we can calculate H and G for any ciphertext T and
reduce the cryptosystem to six rounds	 All the right pairs with respect to the �ve�
round characteristic satisfy f � � h��G� � A� �� �� ��x and f � � g���� �� �� ��x �g�

can be calculated using the known AK��	 Two bytes of AK� equal their counterparts
in AK� and only AK�� and AK�� are di�erent	 We try all the ��� possibilities of these
two bytes	 For each possibility and each pair we calculate F � F � and F � � F � F �	
A right pair satis�es F � � g� � �� �� �� ��x	 We count the number of pairs whose
f � � A� �� �� ��x �as is enforced by the �ve�round characteristic� and whose above
values of F � are equal	 The value of AK� which is counted more often than any other
is likely to be the real value	 The signal to noise ratio of this step is

S�N �
���

�� � ���� � ����
� ����

In this step we can always distinguish all the bits using less than ���� pairs	

Given AK� we reduce the cryptosystem to �ve rounds and �nd AK
 using the
three�round characteristic	 For each possible value of AK
 we count the number of
pairs which satisfy e� � g� � F � �� �� �� �� ��x �the pairs whose e� � �� �� �� ��x
are useless because it enforces a �xed output XOR�� e� � E � and d� � D� � g� � F �	
AK� is calculated similarly by counting the pairs which satisfy d� � A� �� �� ��x and
d� � D�	 AK� is calculated similarly using the one�round characteristic and counting
the pairs which satisfy c� �� �� c� � C � and b� � B�	 AK� is calculated similarly by
counting the pairs which satisfy b� � B�	

AK� cannot be calculated by this characteristic and plaintext XOR because A� �
�� �� �� ��x always and thus all the possibilities succeed under the A� condition with
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equal distribution	 However� it can be found using other characteristics	 The actual
subkeys of the initial transformation AK�� and AKab cannot be found without the
value of a plaintext even if all the other actual subkeys are known	 In our case AK��
AK�� and AKab are not needed since the key itself can be easily obtained from the
actual subkeys we already found	

Although we �nd seven actual subkeys with the �true� assumption that many
actual subkeys have the same values in their �rst bytes� and the same values in their
last bytes� it is possible to extend this attack to the general case where all the actual
subkeys are independent �i	e	� � � �� � � � �� � ��� independent bits�	

��	 Calculating the key itself

Using the values of the actual subkeys AK��AK� the following XORs of the original
subkeys can be obtained�

K��K�

K
�K�

K��K�

K��K


K��K��

���

We can easily derive the key itself by analyzing the structure of the key processing
algorithm using these values	

We try all the ��� possible values of K��	 For each value we calculate �the values
in brackets are known from ����

K�� � K�� � �K�� �K��

K�� � K�� � �K�� �K��

K�� � K�� � �K�� �K���

By the fourth round of the key processing�

K�� � K�� �K�� � S��
� �K��� K���

K�� � K�� � �K�� �K��

K�� � K�� � �K�� �K��

K�� � K�� � �K�� �K���

Now� we �nd two bytes of the key itself� one by the third round of the key processing
and the other by the second round�

Key	 � K�� �K�� � S��
� �K��� K���

Key� � K�� �K�� � S��
� �K��� Key	�

�




and verify by the �rst round of the key processing that

S��K�� �Key	� Key�� � K���

For each remaining value we try all the ��� possibilities of K
�	 Then

K�� � K
� � �K
� �K��

K�� � K
� � �K�� �K
��

By the fourth round of the key processing�

K�� � K�� �K�� � S��
� �K��� K���

K
� � K�� � �K
� �K��

K�� � K
� � �K�� �K
�

K�� � K
� �K�� �K�� � S��
� �K��� K�� �K���

K�� � K
� �K�� � S��
� �K��� K�� �K����

The rest of the key can be found by the third round of the key processing�

Key� � K�� �K�� �K�� � S��
� �K
�� K�� �K���

Key� � K�� �K
� � S��
� �K��� K�� �K���

Key� � K�� �K
� � S��
� �K
�� K���

and by the second round�

Key� � K�� �Key� �Key	 � S��
� �K��� Key� �Key��

Key� � K�� �K�� � S��
� �K��� Key� �Key	�

Key� � K�� �K�� � S��
� �K��� Key���

Given the key� we verify that it is really processed to the known actual subkeys
and that the XOR of a decrypted pair of ciphertexts equals the chosen plaintext XOR
value	 If this veri�cation succeeds then the calculated key is very likely to be the real
key	

��� Results

This attack was implemented on a COMPAQ personal computer	 It �nds the key
in less than two minutes using ���� pairs with more than ��� success rate	 Using
quartets with two characteristics we need ���� ciphertexts for this attack	 Using ����
pairs it �nds the key with almost ���� success rate	 The program uses ���K bytes
of memory	

��



� Cryptanalysis of Feal�N and Feal�NX with N �

�� rounds

Feal�N�� was suggested as an N �round extension of Feal�� after our attack on Feal��
was announced	 Feal�NX�� is similar to Feal�N but uses a longer ����bit key and
a di�erent key processing algorithm	 Since our attack ignores the key processing
algorithm and �nds the actual subkeys� we can apply it to both Feal�N and Feal�NX
with identical complexity and performance	

The attack on Feal with an arbitrary number of rounds is based on the following
iterative characteristic �whose plaintext XOR is P � � �� �� �� �� �� �� �� ��x��

�P � �� �� �� �� �� �� �� ��x

A� � �� �� �� ��x a� � �� �� �� ��x with probability ��


B� � �� �� �� ��x b� � �� E� �� ��x with probability ��


C � � �� �� �� ��x c� � �� E� �� ��x with probability ��


D� � �� �� �� ��x d� � �� �� �� ��x with probability ��


�T � �� �� �� �� �� �� �� ��x�

F

F

F

F

The probability of each round of this characteristic is ��
� and it can be concatenated
to itself any number of times since the swapped value of the two halves of �P equals
�T 	 Thus� for any arbitrary n� an n�round characteristic with probability �

�n
� ���n

can be obtained	

An attack based on a characteristic which is shorter by two rounds than the
cryptosystem is called a �R�attack	 In this case� we know the ciphertext XOR T �

and the input XOR of the last round �w	l	g	 we employ the notation of an eight�
round cryptosystem� h� by the ciphertext� and f � and g� by the characteristic	 Thus�
G� � f � � h� and H � � g� � l�	 Each pair is veri�ed to have g� � G� and h� � H �

��



and the resultant pairs are used in the process of counting the possibilities in order to
�nd the last actual subkey	 Two bits of the last actual subkey are indistinguishable	
Therefore� we must try the following steps in parallel for the four possibilities of these
two bits	 The veri�cation of g� � G� leaves only ���
 of the pairs �since for either
g� � �� �� �� ��x or g� � �� E� �� ��x there are only about ��� possible output
XORs G� and ��� � ���� � ���
�	 The veri�cation of h� � H � leaves ���� of the pairs
�the fraction of the possible entries in the pairs XORs distribution table of the F
function�	 The signal to noise ratio of this process is thus

S�N �
���

���N��� � ���
 � �
� �����N �

The identi�cation leaves

I � ���N��� � ���
 � ���� � ��N���

wrong pairs for each right pair	 Therefore� the right value of the last subkey is counted
with a detectably higher probability than a random value up to N � �� rounds� and
thus we can break Feal�N with �R�attacks for any N � �� rounds� faster than via
exhaustive search� as shown in table �	

An attack based on a characteristic which is shorter by one round than the cryp�
tosystem is called a �R�attack	 Using �R�attacks �w	l	g	 we employ the notation of
an eight�round cryptosystem�� we know T � and h� from the ciphertext and g� and h�

from the characteristic	 Also� H � � g� � l�	 We can verify that h� calculated by the
ciphertext equals the h� of the characteristic� and that h� � H �	 The successfully
�ltered pairs are used in the process of counting the number of times each possible
value of the last actual subkey is suggested� and �nding the most popular value	 Com�
plicating factors are the small number of bits set in h� �which is a constant de�ned
by the characteristic�� and the fact that many values of H � suggest many common
values of the last actual subkey	 The signal to noise ratio of this process is

S�N �
���

���N��� � ���� � �
� �����N �

The identi�cation leaves

I � ���N��� � ���� � ���
 � ��N���

wrong pairs for each right pair	 Therefore� the right value of the last subkey is
counted with detectably higher probability than a random value up to N � �� rounds	
A summary of the �R�attacks on Feal�N appears in table �� and shows that the
di�erential cryptanalysis is faster than exhaustive search up to N � ��	

Note that in both the �R�attacks and the �R�attacks we use octets �structures of
eight encryptions� with four characteristics �this is a special case in which an octet
can have four characteristics since ��

P � ��
P � ��

P � ��
P �	 These four characteristics

are the four possible rotations of the given characteristic	 Thus� each octet gives rise

��



�R�attack �R�attack
N Prob S�N I Pairs Data Prob S�N I Pairs Data
� ���� ��
 ���� ��� ��� ���� ��� ���	 ��	 ���

� ���� ��	 ���� ��� ��� ���� ��� ���� ��
 ���

�� ���� ��� ���� ��� ��	 ���� ��� ���� ��� ���

�� ���� ��� ���� ��� ��
 ���� ��� ���� ��� ���

�� ���� ��� ���� ��� ��� ���� ��� ���
 ��� ���

�� ���� ��
 ��� ��� ��� ���� ��� ���	 ��	 ���

�
 ���� ��	 ��� ��� ��� ���� ��� ���� ��
 ���

�� ���� ��� ��� ��� ��	 ���� ��� ���� ��� ���

�� ���� ��� ��� ��� ��
 ���� ��� ���� ��� ���

�� ���� ��� � ��� ��� ���� ��� ���
 ��� ���

�� ���� ��
 �� ��� ��� ���� ��� ���	 ��	 ���

�� ���� ��	 �� ��� ��� ���� ��� ���� ��
 ���

�� ���� ��� �� ��� ��	 ���� ��� ���� ��� ���

�� ���� ��� �� ��� ��
 ���� ��� ���� ��� ���

�� ���� ��� ��� ��� ��� ���� ��� ��
 ��� ���

�� ���� �
 ��� ��� ��� ���� ��� ��	 ��	 ���

�
 ���� �	 ��� ��� ��� ���� ��� ��� ��
 ���

�� ���� �� ��� ��
 ��� ���� ��� ��� ��� ���

�� ���� �� ��� ��� ��� ���� ��� ��� ��� ���

�� ���� � ��� ��� ��� ���� ��� �� ��� ���

�� ���� ��� ��� ��� ��	 ���� ��� �� ��	 ���

�� ���� ��� ��� ���� �� �� ��
 ���

�� ���� ���� �� �	 ��� ���

�� ���� ���� �� �
 ��� ���

�� ���� ���� �� ��� ��	 ���

Table �� Attacks on Feal�N	

to �� pairs �rather than four� which greatly reduces the required number of chosen
plaintexts	 In both kinds of attacks there are two indistinguishable bits at each of the
last two actual subkeys	 The attacking program should try all the �� possible values
of these bits when analyzing the earlier subkeys	

� Di�erential Cryptanalytic Known Plaintext At�

tacks

Di�erential cryptanalytic attacks are chosen plaintext attacks in which the plaintext
pairs can be chosen at random as long as they satisfy the plaintext XOR condition	
Unlike other chosen plaintext attacks� di�erential cryptanalytic attacks can be easily
converted to known plaintext attacks by the following observation	

��



Cryptosystem Number of Number of Number of
pairs of chosen known
one char plaintexts plaintexts

Feal�
 
 � �����

Feal�� ���� ���� ��	��

Feal��� ��� ��� �����

Feal��� ��� ��
 �����

Feal��� ��� ��	 �����

Feal��
 ��� ��� �����

Feal��� ��� ��� ���

Feal��� ��
 ��� ���

Feal��� ��� ��� �����

DES�� ��� �
� ���

DES�� ����� ����� ���

DES�� ��� ��� ���

DES��� ��� ��� ��
��

DES��� ��� ��� ���

DES��� ��� ��� �����

DES��� ��� ��� ���

DES��
 ��� ��� ��	��

DES��� ��� ��� ���

Table �� Known plaintext attacks on Feal and DES	

Assume that the di�erential cryptanalytic chosen plaintext attack needs m pairs�
and that we are given ��� � p�m random known plaintexts and their corresponding

ciphertexts	 Consider all the
�����

p
�m�

�

�
� ��� �m possible pairs of plaintexts they can

form	 Each pair has a plaintext XOR which can be easily calculated	 Since the block
size is �
 bits� there are only ��� possible plaintext XOR values� and thus there are
about ����m

���
� m pairs creating each plaintext XOR value	 In particular� with high

probability there are about m pairs with each one of the several plaintext XOR values
needed for di�erential cryptanalysis	

The known plaintext attack is not limited to the electronic code book �ECB� mode
of operation	 In particular� the cipher block chaining �CBC� mode can also be broken
by this attack since when the plaintexts and the ciphertexts are known� it is easy to
calculate the real input of the encryption function	

Table � summarizes the di�erential cryptanalytic known plaintext attacks on Feal
and DES	 For each of the listed cryptosystems with the listed number of rounds�
the table describes the number of pairs of each characteristic and the total number of
random plaintexts needed for the chosen plaintext attack and for the known plaintext
attack	

��
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Figure �� Outline of N�Hash	

	 Cryptanalysis of N�Hash

N�Hash�� is designed as a cryptographically strong hash function which hashes mes�
sages of arbitrary length into ����bit values	 The messages are divided into ����bit
blocks� and each block is mixed with the hashed value computed so far by a random�
izing function g	 The new hashed value is the XOR of the output of the g�function
with the block itself and with the old hashed value	 The g�function contains eight
randomizing rounds� and each one of them calls the F function �similar to the one of
Feal� four times	 A graphic description of N�Hash is given in �gures �� �� and 
	

Breaking a cryptographically strong hash function means �nding two di�erent
messages which hash to the same value	 In particular� we break N�Hash by �nding
two di�erent ����bit messages which are hashed to the same ����bit value	 Since the
output of the g�function is XORed with its input in order to form the hashed value�
it su�ces to �nd a right pair for a characteristic of the g�function in which �P � �T 	
After XORing the input with the output of the g�function� the hashed value XOR
becomes zero and thus the two messages have the same hashed value	

The following characteristic is a three�round iterative characteristic with proba�
bility ���� �N�Hash does not swap the two halves after each round since the swap
operation is part of the round itself	 Therefore� the concatenation of the characteris�
tic �� with the characteristic �� is possible whenever ��

T � ��
P without swapping�	

In the description of this characteristic we refer to the value �� �� �� ��x as � and
to the value �� E� �� ��x as �	 Note that both � � �� � �� and �� �� � �� with
probability �

�
by the F function	 The behavior of the XORs in the F function in this

characteristic is similar to their behavior in the iterative characteristic of Feal	 The
characteristic itself is based on the input XOR�

�P � ��� �� �� ���

With probability �
���

the data XOR after the �rst round is

��� �� �� ���

With probability �
���

the data XOR after the second round is

��� �� �� ���

��
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Figure �� The function H and one round �PS� of N�Hash	

S1

S0

S0 S1

F0 F1 F2 F3

f0 f1 f2 f3

k0
k1
k2
k3

Figure �� The F function of N�Hash	
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Number of Rounds Complexity
� ��

� ���

� ���

�� ���

�� �	�

Table �� Results of the attack on N�Hash	

The data after the third round is always

�T � �P � ��� �� �� ���

Therefore� the probability of the characteristic is ����	

A pair of messages whose XOR equals �P has probability ������
�

� ���� to have
�T as its output XOR after the sixth round of the g�function� and thus to have
the same hashed value after their inputs and outputs are XORed by the six�round
variant of N�Hash	 Instead of trying about ��� random pairs of messages we can
choose only pairs from a smaller set in which the characteristic is guaranteed to be
satis�ed in the four F functions of the �rst round	 The pairs in this set are chosen
by the following algorithm	 For each F function in the �rst round we search a priori
a list of input pairs for which the input XOR and the output XOR are as expected
by the characteristic	 To get a new pair we choose a random input pair for each F
function and from the four input pairs and their corresponding outputs we deduce
the two messages backwards	 Therefore� the probability in this set is increased by a
factor of ���� and only about ��� such pairs have to be tested in order to �nd a pair
of messages which hash to the same value	

This speci�c attack works only for variants of N�Hash whose number of rounds is
divisible by three	 Table � describes the results of this attack	 We can see from the
table that this attack is faster than the birthday attack �whose complexity is ���� for
variants of N�Hash with up to �� rounds	

The attack on N�Hash with six rounds was implemented on a personal computer
and the following pairs of messages �as well as many others� were found within about
two hours�

� 	 CAECE��� ���ABF�C �ADE��C	 �F�AD	C�

	 
A	C���� ���A�F�C �ADE��C	 �F�AD	C�

	 Common hash value� ��B���A� ������B� �
�B��	� ��C�EF�D

� 	 �	�	BE
� F����D�� �����E�� �C�	F��E

	 D	�	�E
� ��F�AD�� �����E�� �C�	F��E

	 Common hash value� ��B�FE�� �D���E�E �B�
���	 ���D�	CF	

��




 Cryptanalysis of Feal��

Feal�
 is breakable by a chosen plaintext attack which uses eight ciphertexts and the
plaintext of one of them	 We keep the notation used in the attack on Feal��	 Note
that the attack described here really breaks an extension of Feal�
 whose all subkeys
are ���bit long	

We use the following two�round characteristic with probability � �for which P � �
�� �� �� �� �� �� �� ��x��

�P � �� �� �� �� �� �� �� ��x

A� � � a� � � always

B� � �� �� �� ��x b� � �� �� �� ��x always

�T � �� �� �� �� �� �� �� ��x�

F

F

A right pair with respect to this characteristic �and therefore any pair with this
plaintext XOR P �� satisfy

c� � �� �� �� ��x�

From the other direction
d� � r� � l��

Thus�

C � � d� � b� � r� � l� � �� �� �� ��x

D� � l� � c� � l� � �� �� �� ��x�

The last actual subkey of this cryptosystem is AK�	 Given the value of AK� the
value of D can be calculated for any ciphertext	 For each possible value of AK� we
count the number of pairs for which D� calculated above from the characteristic equals
D� calculated using AK� and for which c� � C �	 The value of AK� which is counted
by all the pairs must be the right value	 There is only a small probability that more
than one such value is counted by all the pairs using four pairs	 This counting can be
done with complexity ��� by counting the possible values of mx�AK��� comparing D�

and then counting the values of AK� whose mx�AK�� is as found in the �rst step	

��



Given AK� we can reduce the cryptosystem to three rounds	 For each possible
value of AK� we count the number of pairs whose values of C � from both directions
are equal using another characteristic	 The value which is counted by all the pairs is
the real value of AK�	 Similarly we �nd AK� and AK� using other characteristics	
The value of the actual subkey used in the initial transformation is easily found using
the given plaintext	

In the search for AK� we use a one�round characteristic with probability � which
cannot be extended to two rounds with probability �� since otherwise the input XOR
of the third round would be constant for all the pairs	 In the search for AK� and
AK� we use pairs with random plaintext XORs	 All the plaintext XORs needed can
be obtained by a structure of eight encryptions	

� A Known Plaintext Attack on Feal��

This known plaintext attack is based on the property of the addition operation that
there is a �xed pattern of carry bits which is generated when many pairs of eight�bit
numbers are added together	 This carry type depends on the additional constant
which is added to the sum	 A similar attack is applicable to Feal��	

De�nition � Let X and Y be eight�bit variables
and let i be an eight�bit constant	 The carry type of the sum X � Y � i is de�ned to
be �X � Y � i �mod ������ �X � Y � i�	 The carry type of the sum X � Y is an
abbreviation of the carry type of the sum X � Y � �	

Note that the carry types always end with a zero	

The following lemma derives the main properties of carry types�

Lemma � Let X and Y be eight�bit numbers	 Then�

�	 A fraction of
�
�
�

�	 � �
	��

of all the sums X � Y have carry type �	

�	 A fraction of
�
�
�

�	 � �
	��

of all the sums X � Y � � have carry type FEx	

�	 A fraction of
�
��
��

�	 � �
�	

of all the pairs of sums X� � Y� and X� � Y� have the
same carry type for both sums	 The same fraction holds for the sums X��Y���
and X� � Y� � �	

Proof �	 �X � Y ��X � Y � � if for any j � f�� � � � � �g either Xj � � or Yj � �	
If Xj � Yj � � there is a carry from bit j to bit j � �	 Therefore� for each bit�
in three out of four cases there is no carry and the total fraction is ��

�
�	 � �

	��
	

�




�	 �X � Y � �� � X � Y � � � FEx if for any j � f�� � � � � �g either Xj � � or
Yj � �	 If Xj � Yj � � there is no carry from bit j to bit j � �	 Therefore�
for each bit� in three out of four cases there is a carry and the total fraction is
��
�
�	 � �

	��
	

�	 If the two carry types are equal then any bit which has a carry in one addition
has a carry in the other and any bit which does not have a carry in one addition�
has no carry in the other	 The probability for one bit to satisfy it is �

�
��
�
��

�
��
�

� ��
��

and the total fraction is ���
��

�	 � �
�	

	

For each encryption with plaintext P and ciphertext T the value of A�C is known
up to a XOR with a key dependent value by

A� C � L�KL� l �Kl � r �Kr�

where �KL�KR� are the subkeys XORed with the plaintext during the encryption
process and �Kl�Kr� are the subkeys XORed with the ciphertext	 Lets concentrate
on

A� � C� � L� �KL� � l� �Kl� � r� �Kr��

A� and C� are

A� � S��a�� A�� � ROL��a� � A��

C� � S��c�� C�� � ROL��c� � C���

a� � A� and c� � C� have the same carry type Z with probability about �
�	

	 In this
case

A� � ROL��a� � A� � Z�

C� � ROL��c� � C� � Z�

and
A� � C� � ROL��a� � A� � Z � c� � C� � Z� �

� ROL��a� � A� � c� � C���

The value A� � C� is known up to the key by

A� � C� � L� �KL� � l� �Kl� � r� �Kr�

and a� is just
a� � L� �KL� �R� �KR��

Thus�

L� �KL� � l� �Kl� � r� �Kr� �

ROL��L� �KL� � R� �KR� � c� �
L� �KL� � l� �Kl� � r� �Kr���

��



Extracting c��

c� � L� � R� � L� � l� � r� �
ROR��L� � l� � r���
KL� �KR� �KL� �Kl� �Kr� �
ROR��KL� �Kl� �Kr���

���

On the other hand�

c� �D� � l� �Kl�

D� � S��d�� D�� � ROL��d� � D��

D� � S��d� � d� �K
�� d� � d� �K
�� �

� ROL���d� � d� �K
�� � �d� � d� �K
�� � ��

with probability about �
	��

�
D� � ROL��d� �D��

and with probability about �
	��

�
D� � ROL���d� � d� �K
��� �d� � d� �K
��� �� FEx� �

� ROL��d� � d� � d� � d� �K
� �K
� � FFx�

where for i � f�� � � � � �g
di � li � ri �Kli �Kri� ���

Thus�
c� � D� � l� �Kl� �

� ROL��d� �D��� l� �Kl� �

� FFx � l� �Kl� � ROL��l� � r� �Kl� �Kr���
ROL
�l� � l� � l� � l� � r� � r� � r� � r� �
Kl� �Kl� �Kl� �Kl� �Kr� �Kr� �Kr� �Kr� �
K
� �K
��� �
�

By equating equations � and 
 and dividing the variables into key variables KC

and plaintext�ciphertext variables EC we get with probability about �
�	
�
�

�
	��

��
�

KC � EC

where
KC � Kl� �KL� �KR� �KL� �Kl� �Kr� �

ROR��KL� �Kl� �Kr���
ROL��Kl� �Kr�� �
ROR
�Kl� �Kl� �Kl� �Kl� �

Kr� �Kr� �Kr� �Kr� �K
� �K
��

EC � FFx � l� � L� �R� � L� � l� � r� �
ROR��L� � l� � r���
ROL��l� � r���
ROL
�l� � l� � l� � l� � r� � r� � r� � r���

��



KC is a constant depending on the key only	 EC can be calculated for every plain�
text�ciphertext pair	 The probability that EC � KC for a plaintext�ciphertext pair
is greater than ������ since the probability we calculated is added to the probability
of random occurrence	 In addition� other carry phenomena cancel each other and
increase the probability of this case	 It is possible to prove the following�

� The probability of EC � KC in a random plaintext�ciphertext pair is about
�����	

� Given about ������ plaintext�ciphertext pairs we can count the number of
occurrences of each possible value of EC and with a high probability the most
frequent value is the value of KC 	

The value of KC does not provide any practical knowledge about the key	 However�
using KC we can �lter the data leaving only those encryptions satisfying EC � KC 	
This �ltration enrich the fraction of the plaintext�ciphertext pairs which have a zero
carry type at the corresponding S boxes	 If the carry type is zero in the S box
outputting D��

D� � ROL���d� � d� �K
�� � �d� � d� �K
�� � �� �

� ROL��d� � d� � d� � d� �K
� �K
� � FFx�

i	e	� by equation �

�l� � r� � l� � r� �Kl� �Kr� �Kl� �Kr� �K
��

� �l� � r� � l� � r� �Kl� �Kr� �Kl� �Kr� �K
�� � � �

� l� � r� � l� � r� � l� � r� � l� � r�

� Kl� �Kr� �Kl� �Kr� �Kl� �Kr� �Kl� �Kr�

� K
� �K
� � FFx

���

Trying all the ��� possibilities of

Kl� �Kr� �Kl� �Kr� �K
�

and
Kl� �Kr� �Kl� �Kr� �K
�

we count the occurrences of the values satisfying equation �	 The value that occurs
most often is likely to be the real value	 One bit is indistinguishable and for the
others we need much more data than in the caes of KC 	 However� the XOR of these
two values is usually the right value of their XOR	

Using those pairs we know D� �assuming the carry type is FEx� and can assume
a zero carry type in D� � S��d�� D�� to �nd more key bits	 Similar calculations can
then �nd all the bits of the last actual subkey	 The other actual subkeys can be found
with much better identi�cation after the reduction to a smaller number of rounds	

��



The attacking program �nds the actual subkeys in less than two minutes on a
personal computer using ������ known plaintexts�ciphertext pairs	 The program
uses ���K bytes of memory	

A Other Properties of Feal

In this appendix we describe several properties of Feal which are not described else�
where in this paper	

�	 The F function is partially invertible� Given the value Y � F �X�K� we can
�nd all the internal values inside the F function and half of the actual input
bytes by�

X� � S��
� �Y�� Y��

X� � S��
� �Y�� Y��

X� �K� � X� �X� �K� � S��
� �Y�� Y��

X� �K� � X� �X� �K� � S��
� �Y�� �X� �K���

�	 The Fk function of the key processing algorithm is partially invertible� Let
Z � Fk�X� Y �	 Then� given any three values out of Z�� Z�� X�� Y�� the fourth
value is easily calculated using the formula�

Z� � S��X�� Z� � Y���

In particular�
Z��� � X��� � Z��� � Y��� � �

since S is linear in the least signi�cant bit of the addition operation	

�	 The following equation of the subkeys is satis�ed by Feal���

Kef��� �Kcd��� � Kcd��� �Kef��� �Kcd��� �K����

or in other writing� by the actual subkeys�

AK���� � AK���� � AK�����

Therefore� given the value of AK�� it is easy to calculate the value of the bit
AK����	 This property is used to discard wrong values of AK� during the search
for the actual subkeys	


	 The key processing algorithm of Feal�� yields ��� subkey bits� of which �� bits
are redundant	 Only ��
 bits are needed during the encryption�decryption

��



processes	 They are�

K�y � K�� dKcd

K�y � K�� dKcd� dKef

K�y � K�� dKcd

K�y � K�� dKcd� dKef

K
y � K
� dKcd

K�y � K�� dKcd� dKef

K�y � K�� dKcd

K�y � K�� dKcd� dKef

K��y � K��� am� dKcd� dKef�

Kaby � Kab� am� dKef�

Kcdy � �Kcd�� �� �� Kcd��

Kef y � �Kef�� �� �� Kef��

where for any ���bit X� �X is the ���bit value of its two middle bytes �i	e	�
�X�� X���	 The encryption and decryption using the new values of the subkeys
give the same results as with the original values	 Another equivalent description
of the subkeys is denoted by the actual subkeys in which the subkeys of the
rounds are extended to �� bits and the subkey of the �nal transformation is
eliminated	

�	 The following property can be used to decide if some input XOR value may
cause some output XOR value by the F function and to �nd real values of bits
by the input XOR and the output XOR	 The decision is done in parallel for
each S box in the F function	

Let Z � Si�X� Y � and Z� � Si�X
�� Y ��	 The lowest bit in the addition operation

satisfy
Z �
� � X �

� � Y �
� �

Let C be the byte of carries in the addition operation �X � Y � i� �mod ����
in Si� de�ned as C � �X � Y � i �mod ������X � Y �i �which is either zero
or one� is interpreted here as a carry into the least signi�cant bit�	 Cj is the
carry bit passed from the �j	 ��th bit of the addition in Si to the jth bit	 Thus�


j � f�� � � � � �g � Cj �
�

�� if Xj�� � Yj�� � Cj�� � � 
�� if Xj�� � Yj�� � Cj�� � �

and C �
j is the value of Cj �C�

j 	 C� � i and thus the value of C �
� is always zero	

Let W be de�ned as ROR��Z� � �X � Y � i� �mod ����	 Then�

C � W �X � Y

and C � is easily calculated from the input XORs and the output XOR by

C � � W � �X � � Y ��

��



X �
j Y �

j C �
j � � C �

j � �
� � Xj � Yj � C �

j�
z C �

j� � ��

� � Yj � Cj � C �
j� � � Xj � Cj � C �

j�
y

� � Xj � Cj � C �
j� � � Yj � Cj � C �

j�
y

� � C �
j� � �� Wj � Cj � Xj � Yj � C �

j� � �z

Table �� Possible known values given the XORs in pairs	

The combination of the values of X �
j� Y

�
j � C �

j and C �
j� �for j � f�� � � � � �g�

can derive some new knowledge	 For example� assume that X �
j � Y �

j � � and
C �
j � � and study the two possibilities of C �

j�	 If C �
j� � � then either ���

Xj � Yj � Cj � � and X�
j � Y �

j � C�
j � � and thus Xj � Yj � �� or ���

Xj � Yj � Cj � � and X�
j � Y �

j � C�
j � � and thus Xj � Yj � �	 In both

cases Xj � Yj	 If C �
j� � � then similarly Xj �� Yj and therefore in general

Xj � Yj � C �
j�	 Table 
 generalizes this observation for all the combinations

of X �
j� Y

�
j and C �

j	 The entries marked by � are particularly useful because they
can be used to identify wrong pairs	 The entries marked by y can be used to
derive the values of the bits X� and Y�	 The entries marked by z can be used
to derive the value of Xj � Yj and the value of Z� �W��	

The F function contains four S boxes	 Some input bytes are used as inputs to
two S boxes and the output bytes of some S boxes are used as inputs to other
S boxes	 By combining the knowledge obtained from the four S boxes we can
�nd contradictions on the values of bits� or calculate by one S box the value of
bits needed in another S box	
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