
Studiengang Kommunikationsinformatik (Master)
Studiengang Praktische Informatik (Master)
Prof. Dr.–Ing. Damian Weber

Security and Cryptography

Random Numbers

1 Motivation

A cryptographic key is a valuable secret.

It protects messages, sometimes other keys, either changes frequently such as in
session keys per web browser session or almost never – a public key certificate validity
duration may easily span years.

Secrets should be unguessable, i.e. not predictable.

If it’s computable, it’s predictable.

So if it’s not predictable, it cannot be computable.

Since real world computers are inherently deterministic, an ideal random source
must be located externally. For theoretical computer scientists, the model is a
probabilistic Turing machine, which is defined with a coin tossing unit to determine
which state the next one given a character of input on the tape. For practical
computer scientists, some external devices are in use, see turbid for an example
which uses audio I/O

http://www.av8n.com/turbid/

BTW not all complexity questions are solved for the theoretical model, for example
it is not known if coin tossing allows for problems to be solved in polynomial time i.e.
P = BPP , here the term BPP stands for bounded-error probabilistic polynomial
time. Small evidence that BPP does not give more capabilities is the proof that
prime detection is in P , a problem that until 2002 only a BPP -solution.

BTW not all uses of random numbers are as valuable as a secret key, but also
the following uses may leak some information if the random number can be guessed:

Seite 1 von 19

initialization vectors for symmetric cipher modes, random authentication challenges,
nonces which are numbers used only once in protocols.

By all practical means, an external random source can not be assumed for every
computing device, the accompanying cost and convenience cannot be justified.

So cryptography usually resorts to the construction

a) generate a small random secret externally, the seed

b) produce algorithmically a long sequence of pseudo–random bits

i) predictably by the creator

ii) computationally unpredictable by an attacker

For the remainder of this note, we are therefore concerned with seeded pseudo-
random-generators (PRNGs) which are producing a sequence of seemingly random
bits.

As an aside, provable security w.r.t. factoring being hard and/or discrete logs are
hard, one can take 1 bit from the Blum-Blum-Shub generator and some bits out of
the Gennaro generator provided that the moduli used have a bitsize ≥ 5000.

http://eprint.iacr.org/2006/229.pdf

2 Unpredictability

Unpredictability means that nobody (but the creator) can output the same ran-
dom bits with a probability better than 1/2. This must even hold true even after
observing an arbitrarily long sequence of pseudo-random bits by that generator.
Implicitely this means, an attacker cannot predict the next n bits correctly with
probability better than 1/2n.

Implicitly this definition covers all statistical attacks. If, for example the PRNG
outputs 1 with probability 2/3 and 0 with probability 1/3 then we can guess the
next bit with probability 2/3 > 1/2. Equally, if the subsequence 111 occurs more
often than in 1/8 of all cases, this violates the 1/23 requirement for the next 3 bits.

Not surprisingly, the first attempt of solving the security problem with random
sequences is to start with a PRNG having a lot of good statistical properties. One
of these is the linear congruential generator.

Seite 2 von 19

3 Linear Congruential Generator (LCG)

Fix a modulus m ∈ N, choose a, b < m, a seed x0 with 0 ≤ x0 < m and define the
sequence

xi = a · xi−1 + b mod m, i ∈ N.

This sequence has been invented and first studied by D.H. Lehmer.

It has a number of provable statistical properties which make it usable in many non–
security–critical environments for example in computer games. There are use cases
where other statistical defects of the LCG prohibit its use (serial correlation makes
LCG unsuitable for Monte–Carlo–Simulation). LCGs typically fail on a statistical
test called spectral test.

When a programmer uses rand() or lrand() with a C compiler, in many systems
the LCG is used.

The length of the period is m if and only if

a) gcd(b,m) = 1

b) a− 1 divisible by all prime factors of m

c) if 4|m then 4|a− 1

which is the statement of the Hull-Dobell Theorem.

More details to be found in

http://en.wikipedia.org/wiki/Linear_congruential_generator

As for the unpredictability the LCG is simply not useful.

For instance let a, b, x0 be secret, you can compute a, b from three successive xi
values, say xi−1, xi, xi+1.

xi = a · xi−1 + b mod m
xi+1 = a · xi + b mod m

Two linear equations with two unknowns a and b are readily solved and output xi+1

may be predicted from that.

Seite 3 von 19

4 Testing

4.1 American and German Standards

A PRNG can be scrutinized by a series of statistical tests.

What NIST thinks of the necessary statistical tests which a cryptographic generator
has to pass is described in its SP800-22 (special publication) document

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

These are reported here in chronological order.

For comments on the NIST tests and a comparison with other standards, see the
talk by Th. Risse on the 11. Workshop Mathematik in Ingenieur-wissenschaftlichen
Studiengängen, Hochschule Bochum, 30.9.2013

http://www.weblearn.hs-bremen.de/risse/papers/MathEng11/RNGs.pdf

For BSI’s point of view regarding generation of random numbers, see

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/

Interpretationen/AIS_20_AIS_31_Evaluation_of_random_number_generators_e.pdf

?__blob=publicationFile

4.2 General Concept

Statistical testing starts with assuming a (null) hypothesis H0 which the test should
affirm or falsify. For the purpose of a pseudo-random sequence, our null hypothesis
is

H0: the sequence being tested is random.

The opposite may be true which can be stated as the alternative hypothesis Ha

Ha: the sequence being tested is not random.

The conclusion of the test, namely accepting or rejecting a PRNG has two good and
two bad cases:

Seite 4 von 19

a) good cases

i) the generator produces random numbers and we accept it

ii) the generator produces non-random numbers and we reject it

b) bad cases

i) (type I error, false positive, false alarm)
the generator produces random numbers and we reject it

ii) (type II error, false negative)
the generator produces non-random numbers and we accept it

The probability α of a false alarm (type I error) is the level of significance of the
test. For crypto purposes, a common value of α is 0.01 this is the bound chosen by
NIST. This means, a true random generator gets rejected by the procedures of this
NIST standard with probability 1%.

The case of a false acceptance (type II error) is fatal for crypto applications, its
probability is denoted by β. The sequence will look like random, because statistical
tests are passed, but it is not random because of some unknown defect. The goal is
to minimize β. Though β is difficult to determine, a bound can be computed as a
function of α and n, the number of observed bits.

Testing assumptions about the sequence are

• uniformity: at each point of the bit sequence a 0 and a 1 are equally likely
with probability 1/2

• scalability: the test can be applied to any subsequence of the sequence

• consistency: the result is independent of the seed value

4.3 Notes from Probability Theory

4.3.1 Error Function

Crucial for acceptance or rejection of a sequence is the complementary error function

erfc(x) =
2√
π

∫

∞

z

e−t2 dt

This function is available in the math library of C

Seite 5 von 19

double erfc(double x);

This function is new to Python 2.7

math.erfc(x)

For most tests, some 100 input bits suffice. If this is not the case, this is explicitly
noted, the first one in the list with this property is the binary matrix rank test in
section 5.5.

4.3.2 Gamma Function

The Gamma function as termed by Legendre is a continuation of the factorial func-
tion to the reals. With

Γ(t) =

∫

∞

0

xt−1e−xdx

the equality
Γ(n) = (n− 1)!

holds for n ∈ N. It is the only continuation of the factorial to the reals if the solution
shall be a superconvex function, i.e. a function f(x) where log(f(x)) is convex, the
uniqueness proved by Bohr and Mollerup in 1922.

http://en.wikipedia.org/wiki/Bohr%E2%80%93Mollerup_theorem

The Gamma function is said to be incomplete if the upper or lower limit of integration
is replaced by a variable. One then talks about the upper or the lower incomplete
Gamma function if the lower or the upper bound of integration is replaced by a
variable. In the statstical tests proposed by NIST, the upper incomplete Gamma
function as defined by

Γ(a, x) =

∫

∞

x

ta−1e−tdt

is sometimes employed when rejecting a PRNG. In order to avoid confusion, the
lower incomplete Gamma function is denoted by a lowercase γ(a, x) with integration
bounds 0 and x.

γ(a, x) =

∫ x

0

ta−1e−tdt

See Mathworld entry

http://mathworld.wolfram.com/IncompleteGammaFunction.html

Seite 6 von 19

or Wikipedia at

http://en.wikipedia.org/wiki/Gamma_function

It is implemented in the GSL (GNU Scientific Library), which is a C/C++ Library.

double gsl_sf_gamma_inc_Q (double a, double x)

The GSL is available as port math/gsl in FreeBSD or as source code download from
a GNU mirror, for example

http://ftp.halifax.rwth-aachen.de/gnu/gsl/gsl-1.16.tar.gz

The gamma functions are also implemented in GP/PARI where gamma serves as
Γ(t), incgam as upper incomplete Γ(a, x) incgamc as lower (read complementary)
incomplete γ(a, x)

? gamma(5)

%2 = 24.000000000000000000000000000000000000

? incgam(1,0)

%3 = 1.0000000000000000000000000000000000000

? incgamc(1,0)

%4 = 0.E-38

The distinction can be made at these special values, since

Γ(1, x) = e−x γ(1, x) = 1− e−x.

4.4 χ2 Test

A χ2 test is useful to determine if an observed number of counts in categories is
in accordance with a theoretical expectation. Categories mean that this test only
applies to discrete values and not to values measured on a continuous scale (although
one might group these into categories).

As an illustrative example we are told that in a tombola winning and losing tickets
are equally distributed. We have two categories: winning and losing.

Seite 7 von 19

There are 1,000 tickets, we cannot afford to buy all these and check them. But we
can do interviews with some people (which should be randomly chosen) and can
count their wins and losses.

After counting 120 tombola tickets, we realize, there were 40 winning and 80 losing
tickets. The question that the χ2 test answers is: can we reject the hypothesis that
the reality (true rate of winning tickets is 1/2) is in accordance with the theory?

The χ2 test performs the following steps.

a) For each category i, compute the formula

di =
(ci − ei)

2

ei

where ci is the counted, ei is the expected value of the category

b) sum up these d–values

χ2 =
∑

i

di

c) compute the P–value (probability value): how probable is it that the counted
values can occur, if the theoretical expectation ti should be fulfilled.

P = Γ(k/2, χ2/2).

Here k is the degree of freedom, i.e. how many independent categories are
considered.

d) if the P–value is below a threshold α (social sciences 5%, random number
generators 1%) then reject the hypothesis (the theoretical expectation must
be wrong, the alleged random number generator is not random)

In our example

χ2 =
(80− 60)2

60
+

(40− 60)2

60
= 13.34.

We have two categories but the number in one category (how many winning tickets)
determines the other (how many losing tickets), so we have k = 1 degree of freedom.

We therefore compute

P = Γ(1/2, χ2/2) = 0.000000425555

which is far below α = 0.01 so we reject the hypothesis of equal distribution of wins
and losses.

Seite 8 von 19

5 Statistical Tests by SP800–22

The i–th subsection of this section refers to section 2.i of SP800–22.

5.1 Frequency (Monobit) Test

The frequency bit test redefines the bits 0 and 1 as -1 and 1 respectively by using
the function f(b) = 2b − 1. It proceeds by summing up all the f(b) where equal
occurences of 0 and 1 cancel out. Call the resulting value S and compute the test
statistic

s =
|S|√
n

and its P–value

P = erfc

(

s√
2

)

Reject the PRNG if P < α.

5.2 Frequency Test within a Block

For this test to be meaningful, the monobit frequency test has to be passed.

The block test partitions the input sequence in N blocks of sizeM , where N = n/M .
Superflous bits are discarded. The recommendation for n, M and N are at least
n ≥ 100 input bits, M > 0.01 · n ≥ 20 and N < 100.

Let πi the percentage of 1s in block i.

Compute the χ2 test.

χ2 = 4M
N
∑

i=1

(

πi −
1

2

)2

Compute the P–value by using the (upper) incomplete gamma function P = Γ(N/2, χ2/2).

Reject the PRNG if P < α.

Seite 9 von 19

5.3 Runs Test

The Runs Test concerns with the number of runs in a sequence. A run is a maximal
sequence of identical bits, be it a 0-run or a 1-run. A run is bounded on the left and
on the right by the opposite bit. If the length of such a sequence is k, we speak of
a run of length k. The test asserts if the oscillation between 0s and 1s is too fast or
too slow.

For this test to be meaningful, the monobit frequency test has to be passed.

The test counts how often the consecutive bits are not identical, i.e.

Vn =
n−2
∑

i=0

(ǫi 6= ǫi+1)

where (ǫ0, . . . , ǫn−1) is the input sequence and the condition inside (. . .) yields false
as 0 and true as 1.

The P–value of this experiment is

P = erfc

(|Vn − 2nπ(1− π)|
2
√
2nπ(1− π)

)

where π is the proportion of 1s in the input sequence.

As usual, reject the PRNG if P < α.

5.4 Test for the Longest Run of Ones in a Block

The test checks whether the observed number of longest runs of length k is in
accordance with the expected number. The lengths are partitioned in classes vi and
the size M of the blocks is prescribed within NIST’s test suite.

M ∈ {8, 128, 10 000}

The classes are constructed as follows:

Seite 10 von 19

vi 8 128 10 000
v0 ≤ 1 ≤ 4 ≤ 10
v1 2 5 11
v2 3 6 12
v3 ≥ 4 7 13
v4 8 14
v5 ≥ 9 15
v6 ≥ 16

The distribution to be expected is the χ2–distribution.

χ2 =
K
∑

i=0

(vi −Nπi)
2

Nπi

where K is the number of vi classes minus one and the value of N is chosen w.r.t.
M as follows: N is 16, 49, 75 when M is 8, 128, 10000 respectively.

The P–value is

P = Γ

(

3

2
,
χ2

2

)

as usual, reject the sequence if P < α.

5.5 Binary Matrix Rank Test

The purpose of this test is to detect linear dependencies among fixed length subse-
quences of the original sequence. The length of a vector is denoted by M as before,
so the vector essentially is a block within the bitstream. Nevertheless the block in
this test is defined in another way, see the next paragraph.

The NIST test is configured to check 32×32 matrices, that is, 1024 bits or 128 bytes
per round. Divide the matrix into N blocks of 1024 bits. For meaningful results, it
is recommended that N ≥ 38.

For each block construct the matrix Ai consisting of 32 rows with 32 entries each.
Determine the rank of of Ai and partition all observed ranks into the following
classes (SP800-22 uses row rank which is equal to column rank):

a) class 1: full rank

b) class 2: full rank minus 1

Seite 11 von 19

c) class 3: less than full rank minus 1

If the sequence is random, the rank shows a χ2 distribution, which is checked by
computing

χ2 =
3
∑

i=1

(F − ciN)2

ciN

with c1 = 0.2888, c2 = 0.5776, c3 = 0.1336 the probabilities that this rank class is
appropriate.

The P–value is computed as
P = e−χ2/2.

As usual, the PRNG gets rejected if P < α.

5.6 Discrete Fourier Transform (Spectral) Test

The purpose of this test is to detect periodic features in an allegedly random se-
quence.

Like in the frequency bit test the bits 0 and 1 are redefined as -1 and 1 respectively
by using the function f(b) = 2b− 1 on the input sequence

(ǫ0, . . . , ǫn−1) n ≥ 1000.

It proceeds by performing a discrete Fourier Transform of the resulting +1/–1–
vector. For 0 ≤ j < n/2 compute

aj =
n−1
∑

k=0

f(ǫk) · exp(2πi · k · j/n)

where i =
√
−1 is the imaginary unit.

As usual this can be carried out in the reals via

exp(2πi · k · j/n) = cos(2πk · j/n) + i sin(2πk · j/n)

Then the absolute value is computed on the first half of this vector. For a ∈ C with
a = c+ di we have

|a| =
√

(c2 + d2).

Seite 12 von 19

Define

T =

√

(

log
1

0.05

)

· n

as the 95% peak height threshold value. This means, 95% of all |aj| should be ≤ T .
Let N0 be the expected number and N1 the actual observed number, that is

N0 = 0.95 · n/2.

We use these to obtain a value

d =
N1 −N0

√

0.95 · 0.05 · n/4.

Finally, the P–value is

P = erfc

(|d|√
2

)

.

Reject the PRNG, if P < α.

5.7 Non-overlapping Template Matching Test

The input sequence is divided in blocks of size M , so that there are N = n/M
blocks.

A bit template B of size m ≤M is chosen which slides window-like over each block.

Let Wj be the number of times that B matches a substring in block j, where
0 ≤ j ≤ N − 1. The window slides one bit except in case of a match when it
slides over m bits.

This is an experiment obeying a χ2 distribution, computed with help of mean and
variance.

µ =
M −m+ 1

2m
σ2 =M

(

1

2m
− 2m− 1

22m

)

.

The χ2 value and P–value are computed by

χ2 =
N−1
∑

j=0

(Wj − µ)2

σ2

and

P = Γ

(

N

2
,
χ2

2

)

Reject the PRNG, if P < α.

Seite 13 von 19

5.8 Overlapping Template Matching Test

The only difference w.r.t. the previous test is that the window slides by 1 bit in
the matching case, too. So for example, matching ,,000” in the bit sequence 100001
gives two matches here and 1 match in the non–overlapping test.

We skip this test, because

• the exposition in the NIST document is not accurate (degree of freedom is
defined but not used, computation of the πi is not described in detail),

• it aims for similar defects than the previous test, and

• apparently not even true random number generators are able to pass these two
tests.

All these points are also mentioned within the 2005 report Random Number Gen-

erators: An Evaluation and Comparison of Random.org and Some Commonly Used

Generators

http://www.random.org/analysis/Analysis2005.pdf

5.9 Maurer’s ,,Universal Statistical” Test

The goal of this test is to estimate the per-bit entropy of the input stream. Based
on a compression type idea of Ziv several statistic measures should be checked by
this method according to the author. Ueli Maurer is a renowned cryptographer for
at least two decades contributing many research papers within this time span.

For 6 ≤ L ≤ 16 the test checks the distance of occurences of each L–bit pattern.
Since there are 2L bit patterns, this quickly becomes quite time consuming for larger
L.

The input of length n = 10 · 2L + 1000 · 2L gets partitioned into into a initialization
segment of Q blocks of L bit and a test segment of K blocks of L bit, where L and
Q are parameter of the test.

Set
K = [

n

L
] + 1−Q.

Superflous bits that do not form an L bit block are discarded.

Seite 14 von 19

Initialize a table with all L–bit patterns and record the last instance (block number
b) where a pattern p occurs within the initialization segment as Tp = b. If the
pattern p does not occur within the initialization segment then record Tp = 0.

Now run L–bit–blockwise through the test segment and do the following for each
pattern p detected at block number b:

a) sum up logarithmic entropy value s = s+ log2(bTp).

b) update Tp according to Tp = b

5.10 Linear Complexity Test

This is the LFSR test. How big is the state of a linear feedback shift register in
order to produce such a sequence. Each finite sequence can be produced by an
LFSR, there is a constructive proof in a Theorem of Berlekamp-Massey that gives
rise to a corresponding algorithm. Possibly, the LFSR is as big as the sequence
so there is no gain in building that one. Incidentally, then the sequence can be
considered random. With a probabilistic argument, if most of the sequence can be
simulated using an LFSR, this is bad for randomness.

Assuming the input sequence consists of N blocks of fixed length M one attempts
the Berlekamp-Massey algorithm for each block. Let Li be the length of the LFSR
of block i. For the probability estimations to work, 500 ≤M ≤ 5000.

The theoretical mean for the Li is

µ =
M

2
+

9 + (−1)M+1

36
−

M
3
+ 2

9

2M

For each block i compute

Ti = (−1)M · (Li − µ) +
2

9
.

The Ti are counted in K = 7 classes as follows

class k condition πk
0 Ti ≤ −2.5 0.010417
1 −2.5 < Ti ≤ −1.5 0.031250
2 −1.5 < Ti ≤ −0.5 0.125000
3 −0.5 < Ti ≤ +0.5 0.500000
4 +0.5 < Ti ≤ +1.5 0.250000
5 +1.5 < Ti ≤ +2.5 0.062500
6 +2.5 < Ti 0.020833

Seite 15 von 19

Whenever Ti is in class k count this occurence in vk.

The vk obey a χ2 distribution which is checked by

χ2 =
K−1
∑

k=0

(vk −Nπk)
2

Nπk

As usual with χ2–distributions, for the P–value, we note

P = Γ

(

K

2
,
χ2

2

)

.

5.11 Serial Test

For a fixed pattern bit length m with m < log(n)− 2 compute the frequency of all
b-bit patterns with

b ∈ {m− 2,m− 1,m}
in vI where I runs over all bitstrings of length b.

Compute the following ψ values, the differences of which form a χ2 distribution. For
the three considered values of b evaluate

ψ2
b =

2b

n

∑

I

(

vI −
n

2b

)

Compute the two differences

∇ψ2
m = ψ2

m − ψ2
m−1 ∇2ψ2

m = ψ2
m − 2ψm−1 + ψ2

m−2

For each of these differences, a P–value is computed

P1 = Γ
(

2m−2,∇ψ2
m

)

P2 = Γ
(

2m−3,∇2ψ2
m

)

which are checked as usual.

5.12 Approximate Entropy Test

This test checks the frequency of overlapping m–bit patterns for two adjacent m’s,
say m and m+ 1, where for the length of the pattern

m < log2(n)− 5.

Seite 16 von 19

Do a frequency count vI of each pattern I of length m while proceeding bit-by-bit.
At the end of the sequence append necessarily m− 1 bits from the beginning.

Set
C

(m)
I =

vI
n

compute

Φ(m) =
∑

I

C
(m)
I logC

(m)
I

and the corresponding Φ(m+1) value by using patterns of length (m+ 1).

Finally, ApEn(m) = Φ(m) − Φ(m+1) and

χ2 = 2n(log 2ApEn(m))

with P–value

P = Γ

(

2m−1,
χ2

2

)

.

5.13 Cumulative Sums (Cusum) Test

Recall from the monobit frequency test, that we evaluated the sum S of redefined
bits f(b) with

f(b) = 2b− 1.

Unlike as in the monobit test, we are interested in the largest excursion from the
origin while summing up.

For each partial sum Sk which sums k (redefined) bits let

z = maxk|Sk|

and

P =

(n
z
−1)/4
∑

k=(−n

z
+1)/4

[

Φ

(

(4k + 1)z√
n

)

− Φ

(

(4k − 1)z√
n

)]

+

(n
z
−1)/4
∑

k=(−n

z
−3)/4

[

Φ

(

(4k + 3)z√
n

)

− Φ

(

(4k + 1)z√
n

)]

with Φ() as the Standard Normal Cumulative Probability Distribution Function.

This function is defined as the following well known integral

Φ(z) =
1√
2π

∫ z

−∞

e−
u
2

2 du

Seite 17 von 19

and computed with a math-library via the error function erfc() with the appropri-
ate scaling:

double cumulativeNormal(double x)

{

return 0.5 * erfc(-x * M_SQRT1_2);

}

This is found in

http://stackoverflow.com/questions/2785944/

cumulative-normal-distribution-function-in-objective-c

and has to be checked for correctness.

5.14 Random Excursions Test

This test needs at least n = 1000 000 bits of input.

Consider the Cumulative Sums (Cusum) Test, where transformed bits are added.
We are interested in the zero crossings of these partial sums. A partial sum is called
state here and is denoted by variable s.

Subsequences starting with zero, ending with a zero and containing no other zero
are called a cycle. Let J be the number of cycles and numerate all cycles from
i = 1, 2 . . . , J .

Within each cycle we count the occurence of a state s in

{−4,−3,−2,−1, 1, 2, 3, 4}

in count variables
ci,−4, ci,−3, . . . , ci,4.

After setting all count variables, we are interested in the number of cycles in which
state s occurs exactly k times, for k = 0, 1, . . . , 5. Denote this number by vk(s). For
k > 5 this occurence is accumulated in v5.

For a certain state s, we have
∑

k

vk(s) = J,

Seite 18 von 19

since in each cycle some number of occurence of s exists.

For each s compute a χ2 value.

χ2
s =

5
∑

k=0

(vk(s)−Kπk(s))
2

Jπk(s)

where πk(s) is taken from the following table (by symmetry obviously πk(s) =
πk(−s)):

s π0(s) π1(s) π2(s) π3(s) π4(s) π5(s)
1 0.5000 0.2500 0.1250 0.0625 0.0312 0.0312
2 0.7500 0.0625 0.0469 0.0352 0.0264 0.0791
3 0.8333 0.0278 0.0231 0.0193 0.0161 0.0804
4 0.8750 0.0156 0.0137 0.0120 0.0105 0.0733
5 0.9000 0.0100 0.0090 0.0081 0.0073 0.0656
6 0.9167 0.0069 0.0064 0.0058 0.0053 0.0588
7 0.9286 0.0051 0.0047 0.0044 0.0041 0.0531

for each state s, compute the corresponding P–value

P = Γ

(

5

2
,
χ2
s

2

)

.

5.15 Random Excursions Variant Test

This variant of the test before is that cycles don’t matter here anymore. For all
integers s with −9 ≤ s ≤ 9, s 6= 0, it is counted, how often that state occurs within
the random walk. As before, J is the number of cycles, i.e. the number of state
s = 0 within the excursion.

Let ξ(s) be the number of occurences of state s.

For each s compute a P–value

Ps = erfc

(

|ξ(s)− J |
√

2J(4|s| − 2)

)

Seite 19 von 19

