
2. Files / Inodes 117

The Inode

2. Files / Inodes 118

Inode Contents

contains administrative data of a file

can be read by the stat() system call

2. Files / Inodes 119

struct stat {

ino_t st_ino; /* inode */

dev_t st_dev; /* device of this file */

mode_t st_mode; /* protection + file type */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */

off_t st_size; /* total size, in bytes */

blksize_t st_blksize; /* blocksize for filesystem I/O */

blkcnt_t st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last change */

};

2. Files / Inodes 120

The File Type

. . . determines which kind of file it is . . .

type description

regular file ,,normal” file with user data or a program -

directory contains file names pointing to their inodes d

link points to another file l

socket UNIX domain socket, process communication s

pipe process communication p

block device device handling data in blocks b

character device device handling data char by char c

2. Files / Inodes 121

The Protection Bits

2. Files / Inodes 122

Default Protection of a New File (umask)

2. Files / Inodes 123

Setting Protection Bits (chmod)

$ ls -l mytestfile

-rw------- 1 dw users 12 Apr 6 10:53 mytestfile

$ chmod 640 mytestfile

$ ls -l mytestfile

-rw-r----- 1 dw users 12 Apr 6 10:53 mytestfile

2. Files / Inodes 124

Meaning on directories (1)

read a directory: read the file names in it

$ ls -ld testdir

dr-------- 2 dw users 1024 Apr 6 11:41 testdir

$ ls -l testdir

/bin/ls: testdir/testfile1: Permission denied

/bin/ls: testdir/testfile2: Permission denied

total 0

$ cd testdir

bash: cd: testdir: Permission denied

$ cat >testdir/testfile3

bash: testdir/testfile3: Permission denied

2. Files / Inodes 125

Meaning on directories (2)

execute bit to a directory: search path allowed

$ ls -ld testdir

d--x------ 2 dw users 1024 Apr 6 11:41 testdir

$ cd testdir

$ cat testfile1

0000000000000000000

1111111111111111111

2222222222222222222

3333333333333333333

2. Files / Inodes 126

Meaning on directories (3)

write to a directory: creating/removing files allowed

makes sense only if execute bit is set

$ ls -ld testdir

drwx------ 2 dw users 1024 Apr 6 11:41 testdir

$ cd testdir

$ ls -l

total 1

-rw-r--r-- 1 dw users 80 Apr 6 11:47 testfile1

-rw-r--r-- 1 dw users 0 Apr 6 11:41 testfile2

$ rm testfile2

$ ls -l

total 1

-rw-r--r-- 1 dw users 80 Apr 6 11:47 testfile1

2. Files / Inodes 127

Special Protection Bits Needed

in a world writable directory like /tmp

everybody may remove anybody’s files

STICKY DIRECTORIES

When the sticky bit is set on a directory, files in that directory

may be unlinked or renamed only by root or their owner.

Without the sticky bit, anyone able to write to the directory can

delete or rename files. The sticky bit is commonly found on

directories, such as /tmp, that are world-writable.

2. Files / Inodes 128

Special Protection Bit: Sticky Bit

The sticky bit is set by a leading 1 in the chmod calls.

Example:

$ chmod 1777 testdir

$ ls -ld testdir

drwxrwxrwt 2 dw users 1024 Apr 6 11:50 testdir

2. Files / Inodes 129

Special Protection Bit: Setuid Bit (1)

the setuid mechanism is needed for controlled access to

• parts of a file

• a file by a certain set of users

and must be logically controlled by a process

2. Files / Inodes 130

Special Protection Bit: Setuid Bit (2)

example: the file /etc/master.passwd on BSD contains encrypted user

passwords

-rw------- root wheel /etc/master.passwd

(/etc/shadow on Linux)

root:1TeLs7PIX$ebgD6bh573GWHN12Aaut5/:

0:0::0:0:root:/root:/bin/csh

sysi40:1dIQvGCrn$f46M9fNfWTmOVsyfQEwdu0:2040:1000:

:0:0:........:/home/sysi40:/usr/local/bin/bash

sysi40 wants to change his password

❀needs write access to /etc/master.passwd

but if he had write access he could change root’s password too

2. Files / Inodes 131

Special Protection Bit: Setuid Bit (3)

Solution: processes have two User–IDs

• RUID: real User–ID – who starts the process

• EUID: effective User–ID – decides about file access

normally RUID==EUID

If the Setuid Bit is set on a program, the EUID

is the UID of the program owner.

With the ps command, we see the EUID.

2. Files / Inodes 132

Special Protection Bit: Setuid Bit (4)

-r-sr-xr-x root wheel /usr/bin/passwd

-rw------- root wheel /etc/master.passwd

• /etc/master.passwd owner root, protection rw-------

• program passwd can change one line in /etc/master.passwd

• program passwd is owned by root

• program passwd has the setuid bit

• sysi40 starts program passwd

• process passwd has RUID=sysi40, EUID=root

❀ for this process the rw- part counts

2. Files / Inodes 133

Special Protection Bit: Setuid Bit (5)

The setuid bit is set by a leading 4 in the chmod calls.

Example:

$ chmod 755 my_program

$ ls -l my_program

-rwxr-xr-x 1 dw users 255996 Jan 17 18:38 my_program

$ chmod 4755 my_program

$ ls -l my_program

-rwsr-xr-x 1 dw users 255996 Jan 17 18:38 my_program

2. Files / Inodes 134

Special Protection Bit: Setgid Bit

The same mechanism holds for the GID field of the protection.

We have

• RGID the real GID

• EGID the effective GID

The setgid bit is set by a leading 2 in the chmod calls.

$ chmod 2755 my_other_program

$ ls -l my_other_program

-rwxr-sr-x 1 dw users 1723139 Feb 15 15:11 my_other_program

2. Files / Inodes 135

Hardlink Count: Hardlinks

Hardlink count is a reference counter.

The inode gets removed if the hardlink count becomes zero.

2. Files / Inodes 136

Symbolic Links: Softlinks

The file has no idea about whether a softlink points to it.

2. Files / Inodes 137

Hardlinks and Softlinks

Hardlinks Softlinks

command ln ln –s

performance faster slower

have a file type no yes

reach across filesystems no yes

to directories no yes

distinguish original/link no yes

traceable no yes

may be broken no yes

In general, commands and system calls follow softlinks, but there are exceptions:

lstat(), tar,. . .

2. Files / Inodes 138

Hardlinks on Directories

. points to current directory

.. points to parent directory

created via mkdir / removed via rmdir

there is no other way to create hard links (even for root)

reasons:

• would break acyclic structure (disk usage utilities etc)

• would create two or more parent directories

2. Files / Inodes 139

Inode Timestamps

Inode Timestamps:

• atime (access time): time of last access, e.g.

functions: read(), execve(), mknod(), pipe(), utime()

• ctime (change time): time of last change of inode info

functions: chown(), chgrp(), chmod(), ...

• mtime (modification time): time of last change of files’s data

write(), mknod(), truncate(), utime()

command that affects timestamps: touch

2. Files / Inodes 140

UNIX Time

UNIX time data: seconds elapsed since

01.01.1970, 00:00:00 UTC.

Stored in a signed 32–bit integer.

UTC = universal time coordinated

GMT = Greenwich Mean Time

CET = Central Europe Time

CEST = Central Europe Summer Time

2. Files / Inodes 141

UNIX Time Overflow

One year has 31536000 seconds.

One leap year has 31622400 seconds.

Four years have 126230400 seconds.

231 seconds are 2147483648 seconds (signed 32-bit).

2147483648 = 17 · 126230400 + 1566848

1566848 = 18 · 24 · 3600 + 11648

11648 = 3 · 3600 + 14 · 60 + 8

So the overflow occurs after

17 · 4 = 68 years, 18 days, 3 hours, 14 min and 8 sec

which is the

19.01.2038, 03:14:08 GMT.

2. Files / Inodes 142

UNIX Time Overflow (2)

Solutions to the overflow problem:

• use unsigned 32-bit integer,

overflow occurs after 2 · 68 = 136 years in the February of 2106

problem: programmers rely on signed integer,

including positive and negative differences of time_t values

• use signed 64-bit integer, overflow in the year 292.277.026.596

(default on 64-bit operating systems)

open question: will there be still 32-bit systems in the year 2038?

• embedded CPUs?

• file systems?

2. Files / Inodes 143

Hardware Clock and Time Zones

When a computer boots, it sets its system clock from the Real–Time–Clock (RTC)

chip containing a 32768 Hz crystal oscillator.

Problems when RTC has local time:

• at the same time, different times are displayed in different time zones

• booting within an hour after DST ends raises questions whether the clock must

be adjusted

• virtualization

– causes one operating system to adjust RTC

– causes the next operating system to adjust RTC

❀ RTC should not have local time

In Microsoft systems, even in Windows 7/8, RTC has local time.

you can create a registry key (up to Windows 8)

SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal

