
TCP States

LISTEN passive open: server waits for conn

SYN_SENT active open: client has sent a SYN

SYN_RECVD server has received client’s SYN

ESTABLISHED conn operational

FIN_WAIT1 process has sent a FIN

FIN_WAIT2 FIN has been ACKed

CLOSE_WAIT process has received a FIN

LAST_ACK upon receiving FIN, process has sent a FIN

CLOSING upon sending FIN, process has received a FIN

TIME_WAIT shutdown completed, wait 2MSL

CLOSED shutdown completed, (host, port) pair disappears



TCP Shutdown Example



netstat – network monitoring

TCP: IPv4

Local Address Remote Address State

----------------- ----------------- -------

*.rpcbind *.* LISTEN

*.ftp *.* LISTEN

*.telnet *.* LISTEN

*.shell *.* LISTEN

*.login *.* LISTEN

*.echo *.* LISTEN

stl-s-stud.1022 stl-s-ad.683 ESTABLISHED

stl-s-stud.35755 stl-s-ad.902 CLOSE_WAIT

stl-s-stud.43470 stl-s-stud.1000 CLOSE_WAIT

stl-s-stud.40562 stl-s-stud.1000 CLOSE_WAIT

stl-s-stud.41396 stl-s-stud.1000 CLOSE_WAIT

stl-s-stud.1000 stl-s-stud.41396 FIN_WAIT_2

stl-s-stud.1000 stl-s-stud.41469 TIME_WAIT



stl-s-stud.42912 stl-s-stud.1000 CLOSE_WAIT

stl-s-stud.1000 stl-s-stud.42912 FIN_WAIT_2

stl-s-stud.1000 stl-s-stud.43727 FIN_WAIT_2



Control Flags

Flag meaning remarks

SYN synchronize sync seq numbers

FIN finish sending is terminated

RST reset conn aborted or reject conn request

ACK acknowledgement acknowledge data

URG urgent urgent data contained in segment

PSH push flush buffer immediately



TCP Segment Format



Windowing

improve performance by allowing a window of non–ACKed data

bounded by 16 bit ;max 64K non–ACKed data

sliding window:

RECEIVING SITE offered window

------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13

------- ---------- ------------ ------

SENDING SITE sent+ACK sent/noACK can be sent wait



Windowing Illustrated



Silly Window Syndrome

scenario

• window of 64K

• sender sends at full throttle

; receiving buffer fills quickly

• receiver clears 1K from buffer due to

read(...,...,1024)

; window 1K

• sender sends 1K immediately

• receiver clears 1K from buffer due to

read(...,...,1024)

; window 1K

• . . .



;window size never bigger than 1K

;lots of traffic for small data size



Nagle Algorithm

avoids silly windows

attention: may be intentional (see TELNET)

send small segment only if all prior segments are acknowledged

problem: interacts with delayed ACK





Congestion

route with capacity R bytes/sec

two hosts sending each at R bytes/sec

throughput is R/2 for each, but . . .

delay for indiviual packet tends to ∞

typical scenario : burst – stalled – burst – stalled . . .

;congestion must be avoided



Congestion Countermeasures

1. Slow Start (1 Segment)

2. exponential growth until threshold reached

3. Congestion Avoidance (linear growth)

on each timeout begin with Slow Start again and threshold/2

auxiliary variable: congestion window

send min(cong-win,recv-win) bytes

research for best congestion algorithms still going on

this algorithm valuable for SMTP, FTP, TELNET, but . . .

how about voice over IP, video–on–demand



TCP Errors

• rejected connections

– no process listening ;ICMP

– firewall rejects request ;ICMP, silent dropping

– application closes connection immediately after

ESTABLISHED

• lost connections

– network failure during ESTABLISHED

– host power outage

; timeout, retransmit



TCP Application Quirks

• no graceful shutdown

– following a performance recommendation to avoid

shutdown sequence

– requests for retransmission are answered by RST

segments

– stalled client . . .World Wide Wait

• weird flag combinations (hacker probe tools)



TCP–Client

1. fill struct sockaddr_in

2. create socket

3. connect to server

4. send / write

5. recv / read

6. shutdown the connection

7. close socket



TCP–Client Functions

int connect(int sockfd, const struct sockaddr *serv_addr,

socklen_t addrlen);

/* 0=ok, -1=error */

EBADF (no filedes), ENOTSOCK (filedes but not socket),

EFAULT (socket not allocated by process), EISCONN (already connected),

ECONNREFUSED (refused), ETIMEDOUT (server busy),

ENETUNREACH (network unreachable), EAGAIN (local ports exhausted),

int send(int s, const void *msg, size_t len, int flags);

/* return # characters or -1 on error */

int write(int s, const void *msg, size_t len);

/* return # characters or -1 on error */



int recv(int s, void *msg, size_t len, int flags);

/* return # characters available, blocks if none */

int read(int s, void *msg, size_t len);

/* return # characters or -1 on error */

int shutdown(int s, int how);

If how is 0, further receives will be disallowed. If how

is 1, further sends will be disallowed. If how is 2, fur

ther sends and receives will be disallowed.

return 0 on success, -1 on error

int close(int fd);



TCP–Server

1. fill struct sockaddr_in

2. create server socket

3. bind server socket to address

4. listen on server socket

5. accept ;new socket

6. read from new socket

7. write to new socket

8. shutdown new socket

9. close new socket ;accept next connection

10. on process termination close server socket



TCP–Functions Server Only

int listen(int s, int backlog);

backlog=queue length for waiting connect()’s

return 0 on success, error=-1

int accept(int s, struct sockaddr *addr,

socklen_t *addrlen);

blockiert, uebernehme Verbindung,

return new socket or -1 (error)



IPv6

IPv4 address space too small (exhausted between 2008 and 2018)

now 128 Bit addresses ≈ 1038 hosts

40–byte fixed length header

flow descriptor (audio/video)

no fragmentation anymore ;ICMP packet too big

no header checksum anymore (TCP/UDP do it anyway)

new ICMP


