
Internet Protocol Motivation

cross local network boundaries



Problem

Hoare’s Law of Large Problems:

Inside every large problem is a small problem struggling to

get out.

Which hardware address does 134.96.217.50 have?



Solution: ARP

ARP=address resolution protocol

must be implemented within layer 2

implements the relation

R ⊂ (B ×B ×B ×B)× (B ×B ×B ×B ×B ×B)

for IP and Ethernet

where B = {0, 1, 2, . . . , 255} i.e. a byte

term byte non-standard ;use octet

is this a map?



Protocol

A protocol is a finite sequence of instructions describing the

interaction between two or more entities. This compounds

the data format of messages between the entities and the

handling of error cases.

Properties:

• Each entity must know the protocol steps.

• The steps must be deterministic for every situation.



Example

Customer buys a tomato from a merchant.

1. The customer asks the merchant for the tomato.

2. The merchant gives the tomato to the customer.

3. The customer gives the merchant money.

4. The merchant gives the customer change.

Problems:

• Does the merchant understand the word “tomato”?

• Is the tomato genuine?

• Is the money of the right money?

• Does the merchant recognize the money?

• Is the money genuine?



• Does the customer run away after step 2?



Protocol Destination

• unicast

• broadcast

• multicast



ARP Relation

R ⊂ (B ×B × . . .×B)
︸ ︷︷ ︸

protocol address

× (B ×B × . . .×B)
︸ ︷︷ ︸

hardware address

Protocol standard: RFC 826 (ARP)



ARP Message Format

sender fills three of the addresses

the unknown entry is set to zero

recipient matches target PADDR ;sends answer



ARP Message Entries

• 16-bit hardware type (Ethernet=6, ATM=19,. . . ), see

RFC 1700

• 16-bit protocol type (IP=0x0800)

• 8-bit hw-address-length (Ethernet=6)

• 8-bit protocol-address-length (IP=4)

• 16-bit message type

– ARP Request (1) / Response (2)

– RARP Request (3) / Response (4)

– IARP Request (8) / Response (9)

• two source addresses, two dest addresses



Protocol Design

request A to all

response B −→ A

a request–response protocol

• simple (broadcast, wait for answer)

• no headers

• no timers

• no negotiation

• no identification

ARP implementation required (RFC 1122 Host

Requirements)



Problems

• No response: host down or busy? Typical timeout

after 20 sec.

• Bandwidth: too many ARP requests ;caching

• How long is a cache entry allowed to live (normally 20

min.)

; Exercise: find out the cache timeout for

Linux/FreeBSD/Win2K/WinXP!

• How big should the ARP cache be?

• Burst data transmission ;burst ARP requests

• Proxy ARP ;ARP responses for disconnected

machines

• There are entries which should never expire: static

caching



ARP Tool

UNIX Tool for arp cache manipulations: arp

isl-c-01:~$ arp -a -n

? (134.96.216.1) at 00:11:bc:4c:38:00 on rl0 [ethernet]

? (134.96.216.92) at 00:20:ed:5f:03:3b on rl0 [ethernet]

? (134.96.216.115) at 00:0e:0c:5e:50:6c on rl0 [ethernet]

? (134.96.216.204) at 08:00:20:c4:92:2a on rl0 [ethernet]

? (134.96.216.217) at 00:00:cb:68:0b:81 on rl0 [ethernet]

? (134.96.216.218) at 00:0e:0c:5a:68:c6 on rl0 [ethernet]

? (134.96.216.225) at 00:03:ba:65:41:b7 on rl0 [ethernet]

? (134.96.216.235) at 00:03:ba:65:39:97 on rl0 [ethernet]

? (134.96.216.255) at ff:ff:ff:ff:ff:ff on rl0 permanent [eth]



ARP Extension: Gratuitous ARP

addresses problem of lifetime of ARP cache entry

assume server s gets new network card

every client x: stale ARP cache entry for s from old card

;s can’t be contacted from x (as long s doesn’t send)

solution: send (unrequested) ARP response packet

protocol address is s for source and destination

source hardware address = hardware address of s

dest. hardware address = FF:FF:FF:FF:FF:FF (broadcast)

send this on boot–up

consequence: cache update but not cache insert

exercise: does your system (Linux, Win2K, WinXP) use

Gratuitous ARP?



ARP Extension: UnARP

unsolicited ARP Reply

addresses problem of lifetime of ARP cache entry

assume DHCP server reassigns same IP address directly

after DHCP release

ARP caches hold still previous hardware address

solution: send (unrequested) ARP response packet

HW address length = 0

RFC 1868 (experimental)

;address gets removed from all ARP caches



ARP reversed: RARP

reverse ARP: given hardware address, find protocol address

typical application: diskless workstation gets IP from server

today mostly replaced by DHCP because

• IP addresses may be reused

• no further info

(hostname, subnet mask, routers, lease length. . . )

source protocol address = destination protocol address = 0

source hardware address = destination hardware address



The Internet Protocol (Layer 3)

analogy: sending a postcard

IP data entity is called packet

sender is oblivious to the routing and the delivery

mechanisms

each local delivery agent does its best

every packet unrelated to each other (maybe different

paths)

inherently unreliable

reliability in higher protocols (layer 4)



IP Standard

RFC 791 (IP)

RFC 1122 (Host Requirements)



Local Delivery



Routed Delivery



Multi-Hop Delivery



Adressing and Routing

one IP address per network interface

more than one ;multihomed

internal routing table: which destination to which networks

loopback interface 127.0.0.1

default route

command: route, very different among UNIX systems



Simplification: Address Hierarchy



Simplification: Address Hierarchy

first byte decides on whether class A, class B, class C



Simplification: Address Hierarchy

class # networks # hosts

A 128 16777216

B 16384 65536

C 2097152 256

exercise: write code to decide the class for a given IP

address



Special Addresses



IP Error Handling

very simple: destroy the packet

transient error: not caused by sender, nothing else happens

semi–permanent error: maybe fault of sender, send an

ICMP error message

ICMP=internet control message protocol, sent over IP



IP Packet Format



Header Checksum

∑

ui, ui 16–bit words

header most important part from IP’s view

wrong checksum ;no ICMP reply

how to implement the check?

why must the the checksum be recomputed at every router?

why no data checksum?

• computational overhead

• higher layer data (TCP/UDP) contained

• some application protocols can handle corrupt data



Time–to–Live (TTL)

on each forwarding device TTL gets decreased

destroy when TTL=0

;no loops possible

exercise: which TTL does your system use?

IANA suggestion is 64 (www.iana.org)



Fragmentation

max IP packet length: 216 = 65536

max. transmission units (MTU) for layer 2

• Hyperchannel : 65536

• Ethernet and PPP: 1500

• IBM Token Ring: 17914

• X.25 and ISDN: 576

;IP packet must be splitted



Fragmentation Illustrated



Fragmentation Detailed

fragment flags

• the DF (=DON’T FRAGMENT) bit

• the MF (=MORE FRAGMENTS) bit

decides whether current fragment is last fragment

;sequence important, need . . .

fragment offset = starting position in 8–byte blocks

every fragment is then an independent IP packet

(total packet length is now fragment length)



Fragmentation Rules

• the recipient assembles all fragments

• headers are not fragmented but newly generated

• multiples of 8 bytes

• each fragment contains same IDENTIFICATION field


